On a Problem of R.A. Hirschfeld.

D. Introduction.

One of the classical results in functional analysis is the Gelfand-Mazur theorem which states that every complex Banach divisor algebra is isomorphic to \mathcal{C}. More generally, I. Kaplansky [3] proved that every complex Von Neumann regular Banach algebra is finite dimensional over \mathcal{C}.

In recent years, R.A. Hirschfeld [2] and A. Verschoren [8] have extended Kaplansky's theorem in another direction.

R.A. Hirschfeld characterized all complex topological Von Neumann regular algebras which are finite dimensional over \mathcal{C}, and, on his suggestion, A. Verschoren extended his work to complex π-regular algebras. Verschoren obtained the following result.

Theorem 1. [8]

Let A be a complex π-regular topological algebra satisfying the following conditions:

(a) A is a Fréchet algebra (i.e. complete metric)
(b) $A/J(A)$ contains no strict field extension of \mathcal{C}
(c) A contains no small idempotents

then $A/J(A)$ is finite dimensional over \mathcal{C}.

Here, $J(A)$ denotes the (ringtheoretical) Jacobson-radical of A, cfr. e.g. [5], and A is said to contain no small idempotents if its origin has a neighbourhood containing no nontrivial idempotent element. E.g. the open unit ball of a complex Banach algebra does not contain any idempotent.

R.A. Hirschfeld asked whether one could extend Theorem 1 to complex topological algebras which are polynomial-regular, i.e. for every $a \in A$ there exists a polynomial $f(X) \in \mathcal{C}[X]$ with zero constant term and an
element \(b \in A \) such that \(f(a) \cdot b \cdot f(a) = f(a) \). The main purpose of this note is to answer this question affirmatively. A secondary aim is to show that the arguments given in [2] and [8] can be shortened considerably by using the classical Artin-Wedderburn structure theorem, cfr. e.g. [1].

1. **Polynomial regular Fréchet algebras.**

In this section we aim to prove the following result.

Theorem 2. Let \(A \) be a Fréchet algebra with identity which is polynomial regular and contains no small idempotents, then \(A/J(A) \) is semisimple Artinian.

Throughout we will assume that \(A \) is a complex polynomial regular algebra and by an idempotent we will always mean a nonzero idempotent.

If \(a \in A \), we will denote by \(P_a \) the set of all polynomials \(f(X) \in \mathbb{C}[X] \) with zero constant term and with a minimal number of non-zero coefficients such that \(f(a) \cdot b \cdot f(a) = f(a) \) for some \(b \in A \). E.g. if \(e \) is an idempotent element, then \(P_e \) consists of monomials. Further, \(H(A) = \{ a \in A \mid \forall x \in A, \forall f \in P_{ax} : f(ax) = 0 \} \).

Lemma 1: If \(A \) is polynomial regular, then \(J(A) = H(A) \).

Proof. By definition \(a \in J(A) \) implies that \(1-ay \) is invertible on the left for every \(y \in A \). Now, take \(x \in A \), \(f \in P_{ax} \) and an element \(b \in A \) such that \(f(ax)b \cdot f(ax) = f(ax) \). Then \(1-f(ax)b = 1-ax \cdot h(ax)c \) for some polynomial \(h(X) \in \mathbb{C}[X] \) and hence there exists an element \(Z \in A \) such that \(Z(1-f(ax)b) = 1 \). Finally, \(f(ax) = Z(1-f(ax)c) \cdot f(ax) = 0 \) and hence \(J(A) \subseteq H(A) \). Conversely, let \(a \in H(A) \) then for every \(x \in A \) and every \(f(X) \in P_{ax} \) we have \(f(ax) = 0 \). Thus, for some \(r \in \mathbb{N} \) and some polynomial \(h \) we have:

\[
(\star) \ (ax)^r(1-ax \cdot h(ax)) = 0
\]
Now, take $e = (ax)^r h(ax)^r h(ax)^r$ then we get using (**) and the fact that
ax and h(ax) commute:

$$e^2 = (ax)^{2r} h(ax)^{2r} = (ax)^{2r-1} h(ax)^{2r-1} = \cdots = (ax)^r h(ax)^r = e$$

Because $H(A)A C H(A)$, e is an idempotent element of $H(A)$. Every $f \in F_e$ is monic yielding that $e = 0$. Therefore, $ax \cdot h(ax)$ is nilpotent and hence

$(1 - ax \cdot h(ax))$ is invertible, its inverse being $1 + ax \cdot h(ax) + (ax)^r h(ax)^r \cdots + (ax)^{r-1} h(ax)^{r-1}$. Finally, using (**) we obtain that ax is nilpotent, whence $1 - ax$ is invertible, so $a \in J(A)$.

Lemma 2. Let A be a polynomial regular Fréchet algebra which contains no small idempotents, then A contains no infinite family of commuting idempotents.

Proof. Suppose there is an infinite family of commuting idempotents

$p_n \in A$. Using completeness of A we can find positive real numbers $\alpha_n \in (0,1)$ such that $\|p_n\| < 2^{-n}$ for each $\beta \in [0,\alpha_n]$ $\| \| \|$ being the

F norm. Let $\lambda_n = \alpha_n^2$ then the sequences $\sum \lambda_n p_n$ and $\sum \lambda_n^{1/2} p_n$ are

absolutely convergent. Let $a = \sum \lambda_n p_n \in A$ then there exists an element

$b \in A$ and a polynomial $f(X) \in \mathbb{C}[X]$ with zero constant term such that

$f(a) \cdot b \cdot f(a) = f(a)$. Now, $g(a) = \sum g(\lambda_n) p_n \cdot b$. $\sum g(\lambda_n) p_n = \sum g(\lambda_n) p_n$.

Multiplying both terms on both sides with p_r yields $g(\lambda_r) p_r \cdot g(\lambda_r) p_r$

$= g(\lambda_r) p_r$ entailing that for every $n \in \mathbb{N}$:

$$g(\lambda_n)^{1/2} p_n b g(\lambda_n)^{1/2} p_n = p_n$$

Now, $c = \sum g(\lambda_n)^{1/2} p_n$ exists by the choice of the $(\lambda_n) \in \mathbb{N}$. Multiplication

being jointly continuous in a complete metric algebra we obtain c.b.c. =

$$\lim_{N \to \infty} \sum_{n=1}^{N} p_n = p_n$$. But A contains no small idempotents, hence the right side
does not exist.
Proof of Theorem 2. Using the proof of lemma 1, every nonzero right ideal in \(A/J(A) \) contains a nonzero idempotent. Using a result of Kaplansky's, it will therefore be sufficient to show that \(A/J(A) \) contains no infinite number of orthogonal idempotents. Assume otherwise, then a countable subset of them can be lifted to a family of orthogonal idempotents of \(A \) by [5, VIII Prop. 4.] and the fact that \(J(A) \) is a nil ideal. But this contradicts Lemma 2.

2. Finite dimensionality of \(A/J(A) \).

We are now in a position to answer Hirschfeld's question:

Proposition 1. Let \(A \) be a complex polynomial regular algebra satisfying satisfying the following conditions

(a) \(A \) is a Fréchet algebra

(b) \(A/J(A) \) contains no strict field extension of \(\mathcal{F} \)

(c) \(A \) contains no small idempotents

then \(A/J(A) \) is finite dimensional over \(\mathcal{F} \)

Proof.

It follows from theorem 2 and the Artin-Weddenburn result that

\[
A/J(A) \cong M_{k_1}(\Delta_1) \oplus \cdots \oplus M_{k_n}(\Delta_n)
\]

where \(\Delta_i \) is a division algebra. Condition (b) implies that \(\Delta_i \cong \mathcal{F} \) for each \(i \), finishing the proof.

Of course, condition (b) is very restrictive. In fact we have the following result: which seems to have been overlooked in [5]:

Proposition 2. If \(A \) is complex polynomial regular Fréchet algebra without small idempotents, then the following statements are equivalent:

(a) : \(A/J(A) \) contains no strict field extension of \(\mathcal{F} \)

(b) : \(A \) is algebraic over \(\mathcal{F} \)
Proof.

(a) \Rightarrow (b): By proposition 1 we know that:

$$A/J(A) \cong M_{k_1}(\mathcal{C}) \oplus \ldots \oplus M_{k_n}(\mathcal{C})$$

Take any element $\overline{a} = (a_1, \ldots, a_n) \in A/J(A)$, then \overline{a} satisfies a polynomial $f(X) \in \mathcal{C}[X]$, namely:

$$f(X) = \prod_{i=1}^{n} g_i(a_i)$$

where $g_i(a_i)$ is the characteristic polynomial of a_i. So, for any $a \in A$ there exists a polynomial $f(X) \in \mathcal{C}[X]$ such that $f(a) \in J(A)$. It follows from the proof of lemma 1 that $J(A)$ is a nil ideal. Therefore, there exists a natural number m such that $f(a)^m = 0$. Finally, a satisfies $f(X)^m$, finishing the proof.

(b) \Rightarrow (a): $A/J(A)$ is algebraic and \mathcal{C} algebraically closed.

References.

