Two Remarks on
Witten's Quantum Enveloping Algebra

Lieven Le Bruyn

Department of Mathematics & Comp. Sci., UIA, Belgium

January, 1993

Report no. 93-01
Abstract

Report no. 93-01

January, 1993

Department of Mathematics & Comp. Sc., Via
Lieve Le Bruyn
*

Lieuw S. Quantum Entanglement Algebra

Two Remarks on
Consider a positively filtered \mathfrak{r}-algebra \mathfrak{h} generated by \mathfrak{h}_1 and contains a non-constant normalizing element $\mathfrak{h} = \mathfrak{h}_0 \subset \mathfrak{h}_1 \subset \mathfrak{h}_2 \subset \cdots$.

The Twist Trick

Abstract

December 23, 1992

em:mail: jebuwuqimnuwa@ac.e

B-2610 Vithik (وقت#)

University of Inhernion Antwerp

Dideremt whiskule in Inomarics

Leven T. Bunu

Quantum Enveloping Algebra

Two Remarks on Witten's
and \mathcal{Y} may be easier to handle.

The motivation behind this procedure is that the defining equations of \mathcal{Y} (resp. \mathcal{X}) modules.

(2) Hence between specific subcategories of filtered \mathcal{Y}-mod. and \mathcal{X}-mod. such that these are in equivalence of categories between \mathcal{V}-er and \mathcal{V}-er, respectively.

Next we will introduce twisted versions of \mathcal{Y} and \mathcal{X} denoted by \mathcal{Y}' and \mathcal{X}'.

In.\mathcal{X}-

(graded) homogenization at the multiplicity of the torsion of graded \mathcal{X}-modules. The inverse function is taking degree zero parts of the homogenization.

It is clear that \mathcal{X} is a graded left \mathcal{X}-module and in $[\mathcal{X}]$ it is shown.

\[
\mathcal{X}_{0} \subset \mathcal{X}_{1} \subset \cdots \subset \mathcal{X}
\]

To a filtered left \mathcal{X}-module we can associate its homogenization \mathcal{X}^\wedge. We have

\[
\mathcal{X}^\wedge \subset \mathcal{X}
\]

For all integers $m \geq 0$ and integers d, let $\mathcal{X} \subset \mathcal{X}_{d}$ be a filtration by d.

Every filtered left \mathcal{X}-module can be equipped with a good \mathcal{X}-filtration.

Clearly, \mathcal{Y} is a positively graded algebra generated in degree one by \mathcal{X}.

As follows.

As in $[\mathcal{X}]$ we define the \mathcal{Y}-free one (or \mathcal{X}-free one) of \mathcal{Y}.

\mathcal{Y}-modules.
\[(I - \gamma N)/\gamma V = \gamma H\]

Thus, for the central element \(N\), the central element \(V\), we see that \(H \approx N\).

For any \(\gamma\)-twisted pair, we can also define a twisted version of the twisted inner product. Hence, twisting with \(\gamma\) of degree one, a non-covering normalizing element of \(A\) becomes one of degree one, followed by \(\gamma\) becoming central element in \(A\), and \(\gamma\) becomes central element in \(V\).

For every homogeneous element \(v \in V\), from the above discussion it then follows that \(\gamma\)-homogeneous element \(v\) in \(V\).

\[N^\gamma = (v)^{\gamma N}\]

By the degree one normalizing element \(\gamma N\), in our situation, the \(\gamma\)-gradation preserving endomorphism will be induced by twisting back with \(\gamma^{-1}\).

The derived \(\gamma\)-derived \(\gamma\)

such that the derived \(\gamma\)-derived \(\gamma\)

on the homogeneous element of degree \(\gamma\)

\[\gamma^{(w, v)} = \gamma \cdot w \cdot v\]

Scalar multiplication is defined via the rule

\[\gamma ((x_1 \cdot \gamma \cdot x_2 \cdot \gamma \cdot \cdots \cdot \gamma \cdot x_n \cdot \gamma)) = \gamma (x_1 \cdot \gamma \cdot x_2 \cdot \gamma \cdot \cdots \cdot \gamma \cdot x_n \cdot \gamma)\]

Those of \(\gamma\)-elements in \(\gamma\) are easily deduced from

\[\gamma (q) = \gamma \cdot q \cdot \gamma\]

So, let \(\gamma\) be a \(\gamma\)-gradation preserving automorphism of the \(\gamma\)-graded algebra.
Remark I. The above can also be applied directly to the study of certain

\[f_{\mu} \simeq (u_{\mu}) \]

Remark 2. Let \(f(u) \) denote the full subcategory of \(R \)-modules consisting of

Concluding.

Proposition 1. For every \(\mathfrak{L} \), let \(\mathfrak{L} \)-module we can associate the homogenization

where \(\mathfrak{N} \) (resp. \(\mathfrak{N}^* \) is homogenization with respect to the central element \(\mathfrak{L} \).\\n\\nProposition 2. When notations above have the following natural cor-

The table above describes the following correspondence:

where \(\mathfrak{L} \) and \(\mathfrak{L}^* \) for the twisted image \(\mathfrak{L}_* \), and with these things. Hence, we can repeat the above
define one part and constructing a non-commutative notion elementary in the

\[\mathfrak{L} \in \mathfrak{A}_{\mathfrak{L}_*} \text{ is again a positively graded } \mathfrak{L} \text{-algebra generated by its Hilbert}

\[\mathfrak{L} \]
and this Hopf algebra.\(^{12}\) Using the general method of the foregoing section we can give a more conceptual description of the interplay between the representation theory of the deformed algebra and the representation theory of the undeformed algebra, namely the Hopf algebra having only the deformed representations as its primitive dimensions. Wronskian\(^{12}\) \(\Phi[\zeta]\) is the theory of the Hopf algebra associated with the quantum Yang-Baxter operator. It is known \cite{W1, W2} that the deformed representation of the quantum group \(U_q(\mathfrak{g})\) are associated with the deformed representation of the quantum group \(U_q(\mathfrak{g})\). This is a direct consequence of the fact that the deformed representation of the quantum group \(U_q(\mathfrak{g})\) is a module for the Hopf algebra obtained by twisting the Hopf algebra \(\mathcal{H}\) with the deformed quantum group \(U_q(\mathfrak{g})\). In this situation, the representation theory of the quantum group \(U_q(\mathfrak{g})\) can be studied using the representation theory of the Hopf algebra \(\mathcal{H}\). This is a powerful tool for understanding the structure of the quantum group \(U_q(\mathfrak{g})\).
Remark 2. Perhaps it should be noted that the associated graded algebra of
the homogenized enveloping algebra of

\[
(X(b - 1) b^\wedge - L(\varepsilon b + 1))^\mathcal{Z}_I = N
\]

and it contains the degree one normalizing element

(2)

\[
0 = \frac{ZL - LZ}{1 + \varepsilon b} = X \Lambda - LX
\]

\[
0 = \frac{\varepsilon X (1 - b)b^\wedge}{1 + \varepsilon b} - LX - \Lambda X - ZX
\]

\[
0 = LZ(1 - b + b) + XZ - X b^\wedge
\]

\[
0 = L(1 - b + b) - X \Lambda b^\wedge - \Lambda X - b^\wedge
\]

exactly^{1}\text{by Equation (2) (3) of } M^h_{W}\text{.}

The homogenization of the positively graded algebra

\[
(x(b - 1) b^\wedge - \varepsilon b + 1)^\mathcal{Z}_I = u
\]

element of filtration degree one.

Hybrid algebra generated by 1, (2) (3) of } M^h_{W}\text{ is positively filtration degree } x\text{ and filtration degree } I\text{, (3) of } M^h_{W}\text{ is positively filtration degree } x\text{ and filtration degree } I\text{.}
\[\begin{align*}
\frac{4x}{b^2} + \frac{e^b}{b^2} &= \frac{4N^+z^b}{e^b} - \frac{x^2}{b^2} \\
\frac{4x}{b^2} &= \frac{x^2 + z^b}{e^b} - \frac{x^2}{b^2} \\
\frac{4N^+z^b}{e^b} &= \frac{x^2 + z^b}{e^b} - \frac{x^2}{b^2}
\end{align*} \]

Equations between which one immediately obtains

\[\begin{align*}
0 &= +^{4z^b}N - -^{4z^b}N = +^{4z^b}X - -^{4z^b}X \\
0 &= +^{4z^b}X \left(\frac{1 + e^b}{b^2} \right) - +^{4z^b}X \\
0 &= +^{4z^b}X \left(\frac{1}{e} \right) + +^{4z^b}X \\
0 &= +^{4z^b}X \left(\frac{1}{e} \right) - +^{4z^b}X
\end{align*} \]

\(^{4z^b}N \) and \(^{4z^b}X \) are defined by \(^{4z^b}N \) and \(^{4z^b}X \) by which is generated by \(^{4z^b}N \).

Since \(\mathcal{L} \) we can calculate the defining equations of the twisted algebra

\[\begin{align*}
\mathcal{L} &= (\mathcal{L})_4 \\
\mathcal{Z}^b &= (\mathcal{Z})_4 \\
\mathcal{X}^b &= (\mathcal{X})_4
\end{align*} \]

Therefore, there are two singular gradings of the plane, for \(\mathcal{M} \) there are no singular gradings in the pencil. For \(\mathcal{M} \) the geometric picture makes the geometric picture more by \(\mathcal{N} \). Again we see that quantization makes the geometric picture more singular gradings of the plane at infinity and the plane determined by the Casimir operator and the lines corresponding to the lines [6]. Similarly, the line module for \(\mathcal{M} \) correspond to the lines.
0 = (f_i(f))(g)\text{det}

determine by the variety \(\mathbb{P}(\mathcal{I}) \) of points in \(\mathbb{A} \times X \) where \(\mathbb{A} \) and \(\mathbb{A}' \) are two isomorphic independent linear terms form \(\mathbb{B} / \mathbb{B}' \) where \(\mathbb{B} \) and \(\mathbb{B}' \) are two isomorphic independent linear terms of the variety \(\mathbb{P}(\mathcal{I}) \). Moreover, these point modules are easy to determine they are of the graded quadratic regular algebra \(\mathcal{A} \) which is not a simple algebra. Now we prove that every point-module of \(\mathcal{A} \) is \(\mathbb{B} = \mathbb{B}' \).

For \(i = 1, 2, 3 \) and the \(f_i \) are linear terms in \(\mathbb{A} \times X \) and \(\mathbb{A}' \), finally we assume that \(\mathcal{A} \) is not a simple algebra.

\[0 = 2^{(f_i(f)/(g))} + X^{(f_i(f)/(g))} \]

Dimension 3, in particular, gives three defining quadratic relations of \(\mathcal{A} \). In particular, \(\mathcal{A} \) is a graded quadratic regular algebra of \(\mathcal{A} \). Moreover, that \(\mathcal{A} \) contains elements \(\mathbb{A} \) and \(\mathbb{A}' \) such that the subalgebras \(\mathbb{A} \) and \(\mathbb{A}' \) are a positively graded algebra with \(\mathbb{A} = \mathbb{A}' \). Assume that the positively graded \(\mathcal{A} \) is a graded algebra with \(\mathcal{A} = \mathbb{A}' \). Assume that the positively graded \(\mathcal{A} \) is a graded algebra with \(\mathcal{A} = \mathbb{A}' \).

More specifically, by the above remark we consider the following situation. Let \(\mathcal{A} \) be an \(\mathcal{A} \)-module over the Rees ring \(\mathcal{A} = \mathbb{A} \). By this we mean that \(\mathcal{A} \)-module with the following properties:

- Assume we have a positively graded algebra \(\mathcal{A} \) and we want to determine if \(\mathcal{A} \) is a simple algebra. We can view this as a Borel subalgebra.

In this section we will argue that 3-dimensional graded quadratic algebra can be viewed as a Borel subalgebra.

3 The Borel trick

The irreducible finite-dimensional representations of \(\mathcal{A} \), in particular, \(\mathcal{A}(\mathfrak{s}) \), in the usual section we will illustrate this with the various representations of \(\mathcal{A}(\mathfrak{s}) \). In particular, the Hopf algebra \(\mathfrak{h}(\mathfrak{s}) \), in the Hopf algebra theory of \(\mathfrak{h}(\mathfrak{s}) \) and the Hopf algebra \(\mathfrak{h}(\mathfrak{s}) \), in the Hopf algebra theory of \(\mathfrak{h}(\mathfrak{s}) \), and the Hopf algebra theory of \(\mathfrak{h}(\mathfrak{s}) \) and the Hopf algebra theory of \(\mathfrak{h}(\mathfrak{s}) \), in the Hopf algebra theory of \(\mathfrak{h}(\mathfrak{s}) \), in the Hopf algebra theory of \(\mathfrak{h}(\mathfrak{s}) \).
The components separately.

Therefore, the point-modules of \(b \) are represented by the point lying on the cubic divisor.

\[
(L^b + b) - X(b^\Lambda - \frac{b^\Lambda}{L}) = \begin{pmatrix}
\Lambda & L - 0 \\
X & 0 \\
\Lambda(L^b + b) - Xb^\Lambda & \Lambda b^\Lambda
\end{pmatrix}
\]

(9)

\[
0 = \Lambda L - JL \\
0 = X L - JL \\
[L(A^b + b)^\Lambda = X\Lambda b^\Lambda - \Lambda X b^\Lambda]
\]

There are two obvious 3-dimensional graded A-envelope regular subalgebras of \(\Lambda b \).

\[\Lambda b \]

The simple representations of \(\Lambda b \) can be viewed as a graded subalgebra of \(\Lambda \). The A-envelope can be viewed as a graded subalgebra of \(\Lambda \).

\[\Lambda b \]

Observe that if we started with a finite-dimensional simple representation of \(\Lambda \), which is an epimorphism (in the case of \(\Lambda b \))

\[\Lambda b \]

Hence, there is a graded \(B \)-submodule.
The second value of λ gives the determinant of the spin-representation for a non-zero divisor on J. Thus, the defining relations of M_{λ} can be computed.

The above condition yields a value for λ. In order to have

$$\lambda = a' \cdot 2^k \cdot b'$$

we have

$$J \leftrightarrow (J^\lambda - N)^{\lambda}M + \lambda M^{/b}M = T$$

and

$$J$$

is a point of the parameter of an induced-spin module V.
References