LOGICA

deel 1: cursusnotas theorie

lieven le bruyn
Inhoudsopgave

1 Eerste Orde Logica .. 5
 1.1 Propositie logica is compact ... 5
 1.2 Eerste orde theorieën ... 7
 1.3 Henkin’s getuigen-taal ... 11
 1.4 Reductie tot propositie logica ... 13
 1.5 Eerste orde logica is compact ... 16
 1.6 De Löwenheim-Skolem stelling .. 18
 1.7 Hilbert-stijl formele systemen ... 19
 1.8 Gödels volledigheid stelling ... 20

2 Model theorie .. 23
 2.1 Definities ... 23
 2.2 De stelling van Vaught ... 24
 2.3 Quantoren eliminatie ... 26
 2.4 Peano en niet standaard modellen ... 28
 2.5 Codering van eerste-orde theorieën .. 29
 2.6 Gödel’s onvolledigheid stellingen ... 31
INHOUDSOPGAVE
Hoofdstuk 1

Eerste Orde Logica

1.1 Propositie logica is compact

Propositie logica is de studie van zinnen zonder quantoren (\forall and \exists). Formeel bestaat de proppositie logica uit een verzameling *priem formules* \(P \) die we kunnen voorstellen als de constanten van de theorie \(x, y, z, x_1, \ldots \) en die verbonden worden door de logische symbolen \(\neg, \land, \lor, \rightarrow \).

Definitie 1.1.1 De verzameling *propositie formules* van \(P \) is de kleinste verzameling expressies die de elementen van \(P \) bevat en gesloten is onder de volgende regel: als \(A \) en \(B \) proppositie formules zijn dan ook \(\neg A, (A \land B), (A \lor B) \) en \(A \rightarrow B \).

De priem componenten van een proppositie formule \(A \) zijn de priem formules waaruit \(A \) is opgebouwd.

Beschouw twee nieuwe symbolen \(t \) ('waar') en \(f \) ('vals'). Een *waarde specializatie* \(v \) voor een verzameling \(P \) van priem formules is een afbeelding

\[v : P \rightarrow \{ t, f \} \]

Gegeven een waarde specializatie \(v \) voor \(P \) kunnen we een uitbreiding \(V \) hiervan definieren op alle proppositie formules van \(P \) middels volgende regels

\[V(A) = v(A) \text{ als } A \text{ een priem formule is} \]
\[V(\neg A) = f \text{ als } V(A) = t \]
\[= t \text{ als } V(A) = f \]
\[V(A \land B) = t \text{ als } V(A) = V(B) = t \]
\[= f \text{ anders} \]
\[V(A \lor B) = t \text{ als } V(A) = t \text{ of } V(B) = t \text{ of beiden} \]
\[= f \text{ anders} \]
\[V(A \rightarrow B) = f \text{ als } V(A) = t \text{ en } V(B) = f \]
\[= t \text{ anders} \]
Een andere wijze om deze informatie samen te vatten is in de vorm van 'waarheids-
tabellen' (u-wel bekend sinds kantoor)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>¬A</th>
<th>(A ∧ B)</th>
<th>(A ∨ B)</th>
<th>(A → B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
</tr>
</tbody>
</table>

en het is u bekend hoe men de waarheidsstabel opstelt van een willekeurige propositie formule.

Definitie 1.1.2 Zij A een proppositie formule van \(P \).

1. A is een tautologie als \(V(A) = t \) voor alle waarde specializaties \(v : P \to \{t, f\} \)

2. A is consistent als \(V(A) = t \) voor tenminste 1 waarde specialisatie \(v \)

Definitie 1.1.3 Een verzameling \(T \) van propositie formules van \(P \) noemen we consistent als er een waarde specialisatie \(v : P \to \{t, f\} \) bestaat zodat \(V(A) = t \) voor alle \(A \in T \).

Stelling 1.1.1 (compactheid van propositie logica) Een verzameling van propositie formules \(T \) van \(P \) is consistent als en slechts dan als iedere eindige deelverzameling van \(T \) consistent is.

Bewijs: Beschouw \(\{t, f\} \) met de discrete topologie dan is dit natuurlijk een compacte topologische ruimte (iedere open overdekking heeft een eindige deel overdekking). Uit de stelling van Tychonoff volgt dan ook dat \(X = \{t, f\}^P \) (alle functies van \(P \to \{t, f\} \), d.i. de product ruimte) met de produkt topologie een compacte ruimte.

Zij \(A \) een proppositie formule van \(P \) en definieer \(F_A = \{v \in X \mid V(A) = t\} \). We beweren dat \(F_A \) zowel open als gesloten is in de produkt topologie op \(X \) en tonen dit inductief aan. Misschien is het nuttig te herinneren dat de produkt topologie wordt voortgebracht door de opens \(U_v = \times_{v \neq v_U} X \times U \) met \(U \) open in de \(v \)-component \(\{t, f\} \).

Neem nu \(A \) een priem formule, d.i. \(A \in P \) dan is \(F_A = \{t\}_A \) en dus open wegens voorgaande. Verder is \(F_A \) ook gesloten want \(X - F_A = \{f\}_A \) is wederom open.

De bewering voor ingewikkelder formules volgt per inductie op de lengte van de formule door gebruik te maken van volgende gelijkheden (ga deze na als oefening)

\[
F_{(A \lor B)} = F_A \cup F_B \quad F_{(A \land B)} = F_A \cap F_B
\]
1.2. EERSTE ORDE THEORIEËN

\[F_{(A \rightarrow B)} = F_B \cup (X - F_A) \quad F_\neg A = X - F_A \]

en ga na dat alle recterleden zowel open als gesloten zijn.

Neem nu een verzameling \(T \) van propositie formules van \(P \) en veronderstel dat \(T \) niet consistent is. Dit wil zeggen

\[\bigcap_{A \in T} F_A = \emptyset \]

Omdat alle \(F_A \) gesloten delen zijn (en de complementen dus open) volgt uit de definitie van compactheid dat er een eindig deel \(T_0 \) van \(T \) moet bestaan zodat

\[\bigcap_{A \in T_0} F_A = \emptyset \]

en dus dat \(T_0 \) niet consistent is, een contradictie en klaar. \(\Box \)

Oefening 1.1.1 Gebruik deze stelling om aan te tonen dat wanneer een oneindige kaart niet gekleurd kan worden met \(k \) kleuren (natuurlijk zodat buurlanden niet dezelfde kleur hebben) er een eindige deelkaart bestaat die niet gekleurd kan worden met \(k \) kleuren.

1.2 Eerste orde theorieën

Een taal \(\mathcal{L} \) bestaat uit een verzameling functie symbolen, relatie symbolen en constante symbolen. Hoewel we geen voorwaarden opleggen op de grootte van \(\mathcal{L} \) zal in de meeste voorbeelden \(\mathcal{L} \) eindig of ten hoogste aftelbaar oneindig zijn.

Aan ieder functie-symbool \(f \in \mathcal{L} \) en aan ieder relatie-symbool \(R \in \mathcal{L} \) is een geheel getal \(n \in \mathbb{N} - \{0\} \) gesignaleerd. We noemen \(f \) dan een \(n \)-voudig functie symbool en \(R \) een \(n \)-voudig relatie symbool.

Definitie 1.2.1 Een structuur voor \(\mathcal{L} \) is een verzameling \(A \) waarin we voor ieder element van de taal \(\mathcal{L} \) een interpretatie hebben, dus

1. Als \(R \in \mathcal{L} \) een \(n \)-voudig relatie-symbool is, dan hebben we een \(n \)-voudige relatie \(R_A \subseteq A^n \)

2. Als \(f \in \mathcal{L} \) een \(n \)-voudig functie-symbool is, dan hebben we een \(n \)-voudige functie \(f_A : A^n \rightarrow A \)

3. Als \(c \in \mathcal{L} \) een constant symbool is dan hebben we een constante \(c_A \in A \)

We komen nu tot de syntax van eerste orde in de taal \(\mathcal{L} \). Een expressie noemen we iedere eindige string waarvan elk element ofwel een basis symbool is (\(\land, \lor, \neg, \rightarrow \), \(\leftrightarrow \) of \(\equiv, \exists, \forall, x, y, z, x_1 \), ... waar \(x, y, z, x_1 \), ... een mogelijk aftelbare verzameling variabelen is) of een element van \(\mathcal{L} \). Natuurlijk zullen niet alle expressies zinnige interpretaties toelaten.
Definitie 1.2.2 De termen van \mathcal{L} is de kleinste verzameling expressies die alle variabelen en constanten bevat en gesloten is onder de functie-symboolen van \mathcal{L}. Dat is, als t_1, \ldots, t_n termen zijn en f een n-voudig functie-symbool is van \mathcal{L}, dan is ook $f(t_1, \ldots, t_n)$ een term. Een term noemen we gesloten als er geen variabelen in voorkomen.

Als \mathcal{L} geen functie-symboolen heeft dan zijn de enige termen van \mathcal{L} de variabelen de de constanten van \mathcal{L}.

Definitie 1.2.3 Een atoom-formule van \mathcal{L} is een expressie die 1 van beide volgende vormen heeft

- $(t_1 = t_2)$ met t_1, t_2 termen van \mathcal{L}
- $R(t_1, \ldots, t_n)$ als R een n-voudig relatie symbool is van \mathcal{L} en t_1, \ldots, t_n termen van \mathcal{L}

Definitie 1.2.4 De eerste-orde formules in de taal \mathcal{L} is de kleinste verzameling expressies die de atoom-formules bevat en gesloten is onder devolgende regels

1. Zijn ϕ en ψ formules, dan ook

 $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \rightarrow \psi)$

2. Is ϕ een formule en v een variabele, dan zijn

 $(\exists v \phi)$ en $(\forall v \phi)$

 formules

Definitie 1.2.5 Als ϕ een eerste-orde formule is in de taal \mathcal{L}, dan definieren we de verzameling van vrije variabelen in ϕ, $FV(\phi)$, als volgt

1. $FV(\neg \phi) = FV(\phi)$

2. $FV(\phi \land \psi) = FV(\phi \lor \psi) = FV(\phi \rightarrow \psi) = FV(\phi) \cup FV(\psi)$

3. $FV(\exists v \phi) = FV(\forall v \phi) = FV(\phi) - \{v\}$

4. Als ϕ een atoom-formule is dan is $FV(\phi)$ de verzameling van variabelen die in ϕ voorkomen.

We zullen met $\phi(v_1, \ldots, v_n)$ aanduiden dat $FV(\phi) \subseteq \{v_1, \ldots, v_n\}$ (merk op dat dit geen gelijkheid hoeft te zijn). We komen nu aan de essentie van deze sectie:
Definitie 1.2.6 Een eerste orde zin in de taal L is een eerste orde formule zonder vrije variabelen.

Termen, formules en zinnen zijn gewoon strings in symbolen en elementen van L. Gegeven een structuur A van L zouden we deze strings willen interpreteren in de structuur en nagaan of een zin geldt in de structuur of niet. We hebben reeds interpretaties van de constanten, de relatie en functie-symboolen maar niet van de variabelen. Zij nu s een afbeelding van alle variabelen in L naar een (deel van) de structuur A, s noemen we een specialisatie. We kunnen nu aan iedere term t een functie t_A associeren die specialisaties naar elementen in A mapt.

Definitie 1.2.7 Zij t een term in L en defineer $t_A(s)$ voor een specialisatie s als volgt

1. Als $t = c$ een constant-symbool, dan $t_A(s) = c_A$
2. Als $t = v$ een variabele in L, dan $t_A(s) = s(v)$
3. Als $t = f(t_1, ..., t_n)$ voor f een n-voudig functie-symbool in L, dan $t_A(s) = f_A(t_1A(s), ..., t_nA(s))$

Merk op dat in het laatste geval de termen t_i eenvoudiger zijn en we mogen aannemen bij inductie dat we de bijhorende maps reeds kennen. Nu we aan iedere specialisatie een interpretatie kunnen toekennen van elke term in de structuur A, kunnen we dit ook uitbreiden tot een interpretatie van formules en zinnen en kunnen we nagaan of deze al dan niet gelden in A voor een bepaalde (of alle) specialisaties s. We gaan nu de relatie definieren

$A \models \phi[s]$

die we interpreteren als: als we de specialisatie s toepassen op de formule ϕ dan krijgen we een ware uitspraak in het model A. In de volgende regels noteren we met $s(v | a)$ de specialisatie s' die overal samenvalt met s behalve dat $s'(v) = a$.

Definitie 1.2.8 Gegeven een specialisatie s in de structuur A en ϕ een formule in de taal L.

1. $A \models (t_1 = t_2)[s]$ as $t_{1A}[s] = t_{2A}[s]$
2. $A \models R(t_1, ..., t_n)[s]$ as $(t_{1A}[s], ..., t_{nA}[s]) \in R_A$
3. $A \models \neg \phi[s]$ as niet $A \models \phi[s]$
4. $A \models (\phi \land \psi)[s]$ as $A \models \phi[s]$ en $A \models \psi[s]$
5. $A \models (\phi \lor \psi)[s]$ as $A \models \phi[s]$ of $A \models \psi[s]$ of beiden
6. \[\mathcal{A} \vdash (\phi \rightarrow \psi)[s] \] asa \[\mathcal{A} \models \psi[s] \] of niet \[\mathcal{A} \vdash \phi[s] \]

7. \[\mathcal{A} \vdash (\exists v \phi)[s] \] asa er bestaat een \(a \in \mathcal{A} \) zo dat \(\mathcal{A} \models \phi[s(v \mid a)] \)

8. \[\mathcal{A} \models (\forall v \phi)[s] \] asa voor alle \(a \in \mathcal{A}, \mathcal{A} \models \phi[s(v \mid a)] \)

Merk op dat het al dan niet waar zijn van \(\mathcal{A} \models \phi[s] \) enkel afhangt van de waarden \(s(v) \) van variabelen die vrij zijn in \(\phi \). In het bijzonder, als \(\phi \) een eerste-orde zin is in de taal \(\mathcal{L} \) dan is het al dan niet waar zijn van \(\mathcal{A} \models \phi[s] \) volledig onafhankelijk van de specialisatie \(s \) en we kunnen dus schrijven \(\mathcal{A} \models \phi \) waarmee we bedoelen \(\mathcal{A} \) is een model voor \(\phi \) of de structuur \(\mathcal{A} \) voldoet aan \(\phi \).

Definitie 1.2.9 1. \(\mathcal{A} \) noemen we een model voor een verzameling \(\Phi \) van eerste-orde zinnen in \(\mathcal{L} \) asa \(\mathcal{A} \models \phi \) voor alle \(\phi \in \Phi \).

2. \(\mathcal{A} \) en \(\mathcal{B} \) noemen we elementair equivalent en we noteren \(\mathcal{A} \equiv \mathcal{B} \) asa voor alle eerste-orde zinnen \(\phi \) in de taal \(\mathcal{L} \), \(\mathcal{A} \models \phi \iff \mathcal{B} \models \phi \).

3. Zij \(\mathcal{K} \) een klasse van structuren voor de taal \(\mathcal{L} \). We noemen \(\mathcal{K} \) (eindig) axiomatiseerbaar asa er bestaat een (eindige) verzameling eerste-orde zinnen \(\Phi \) in \(\mathcal{L} \) zodat voor alle structuren \(\mathcal{A} \) van \(\mathcal{L} \) geldt \(\mathcal{A} \in \mathcal{K} \iff \mathcal{A} \) is een model voor \(\Phi \).

Voorbeeld 1.2.1 De taal \(\mathcal{L}_{Ab} \) der Abelse groepen bestaat uit

- een constant symbool 0 (het neutraal element)
- een 1-voudig functie symbool \(-\) (de inverse)
- een 2-voudig functie symbool ++ (de som)
- een relatie symbool = (gelijkheid)

Teneinde alles leesbaar te houden noteren we de functiesymbolen met \(-t \equiv -(t)\) en \(t+s \equiv +(t \, s)\). Een Abelse groep is dan een model voor de volgende verzameling eerste orde zinnen in \(\mathcal{L}_{Ab} \)

\[
\forall x \, y \, z \, ((x + y) + z = x + (y + z)) \\
\forall x \, y (x + y = y + x) \\
\forall x (x + 0 = x) \\
\forall x (-x + x = 0)
\]

Klassieke voorbeelden zijn \(\mathbb{Z} \) met de gewone optelling, \(\mathbb{Z}/p\mathbb{Z} \) met de quotiënt structuur. Iedere eindige Abelse groep is isomorf met \(\times_{i=1}^{k} \mathbb{Z}/p_i^n \mathbb{Z} \) voor priemgetallen \(p_i \).
1.3. HENKIN'S GETUIGEN-TAAL

Voorbeeld 1.2.2 De taal L_{Ring} omvat L_{Ab} en bevat additioneel

- een constant symbool 1 (multiplicatieve eenheid)
- een 2-voudig functie symbool 1 (multiplicatie)

Een commutatieve ring is een Abelse groep voor de optelling alsook een model voor de bijkomende eerste orde zinnen in L_{Ring}

$$\forall x \, y \, z \, ((x \cdot y) \cdot z = x \cdot (y \cdot z))$$
$$\forall x \, y \, (x \cdot y = y \cdot x)$$
$$\forall x \, (1 \cdot x = x)$$
$$\forall x \, y \, z \, (x \cdot (y + z) = x \cdot y + x \cdot z)$$
$$0 \neq 1$$

Klassieke voorbeelden vormen $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ met de gewone optelling en vermenigvuldiging alsook polynoomringen bvb. $\mathbb{C}[X_1, \ldots, X_n]$ en eindige ringen $\mathbb{Z}/a\mathbb{Z}$.

Voorbeeld 1.2.3 De taal der lichamen L_{Lich} omvat L_{Ring} en bevat een additioneel 1-voudig functie symbool -1 (de multiplicatieve inverse). Een (kommutatief) lichaam is een commutatieve ring die bovendien een model is voor de eerste orde zin

$$\forall x (x \neq 0 \rightarrow x \cdot x^{-1} = 1)$$

Ga zelf na welke van de gegeven voorbeelden van Abelse groepen en ringen lichamen zijn.

1.3 Henkin's getuigen-taal

We gaan nu de resultaten over propositie logica toepassen op de eerste-orde logica. We nemen als verzameling P van alle priem formules de verzameling van alle formules in de taal L die ofwel atoom formules zijn ofwel beginnen met een quantor (\forall of \exists).

Definitie 1.3.1 Een tautologie van de eerste-orde logica is een formule die waar is onafhankelijk van de waarde specialisatie op de priem formules.

Voorbeeld 1.3.1 De formule

$$\forall x \, R(x) \lor \neg \forall x \, R(x)$$

is een tautologie van eerste-orde logica maar de formule

$$\forall x \, (R(x) \lor \neg R(x))$$

is geen tautologie, want het is een priem formule.
Lemma 1.3.1 Zij A een structuur voor de taal L en s een specialisatie in A (dus een map van de variabelen van L in A). Er bestaat een waarde specialisatie v aan alle priem formules van L met de eigenschap dat voor alle formules ϕ in L we hebben dat $V(\phi) = t$ asa $A \models \phi[s]$. In het bijzonder is iedere verzameling van ware zinnen in een model A consistent voor de propositie logica.

Bewijs: Voor iedere priem formule ϕ in de taal L definieren we de waarde specialisatie $v(\phi) = t$ asa $A \models \phi[s]$ en $v(\phi) = f$ anders. Vermits alle formules opgebouwd werden uit priem formules door middel van de logische bindtekens volgen de beweringen nu automatisch.

Opmerking 1 Het omgekeerde is niet waar. Men kan gemakkelijk een consistent verzameling zinnen hebben in de betekenis van de propositie logica (bv. omdat ze allen priemformules zijn) die toch geen enkel model hebben. Bv. de volgende verzameling

$$\{\forall x(R(x) \rightarrow S(x)), \forall xR(x), \exists x \neg S(x)\}$$

Definitie 1.3.2 Als u, v, w, u_1, \ldots de variabelen en constanten noteren van een taal L dan zijn de gelijkheids axiomas in L de volgende expressies

- $(u = u)$
- $(u = v) \rightarrow (v = u)$
- $(u = v \land v = w) \rightarrow (u = w)$
- $(u_1 = v_1 \land \ldots \land u_n = v_n) \rightarrow (R(u_1 \ldots u_n) = R(v_1 \ldots v_n))$ voor alle n-voudige relatie symbolen R van L
- $(u_1 = v_1 \land \ldots \land u_n = v_n) \rightarrow (t(u_1 \ldots u_n) = t(v_1 \ldots v_n))$ voor elke n-voudige term van L

Merk op dat al deze gelijkheids axiomas automatisch waar zijn in iedere structuur A van L. Dat is, voor iedere specialisatie s van de variabelen van L en ieder gelijkheids axioma ϕ geldt $A \models \phi[s]$.

Definitie 1.3.3 Voor iedere taal L kan Henkin's getuigen taal $L(C)$ als volgt geconstrueerd worden.

Zij $C_0 = \emptyset$ en voor iedere $n \in \mathbb{N}$, eens we C_n gedefinieerd hebben, laat L_n de taal $L \cup C_n$ zijn.

Voor iedere formule $\phi(v)$ van $L_0 = L$ met juist 1 vrije variabele v, neem $c_{\phi(v)}$ een nieuw constant-symbool en laat C_1 de verzameling zijn van al deze $c_{\phi(v)}$.

Gegeven C_n construeer een nieuwe constant-symbool $c_{\phi(v)}$ voor iedere formule $\phi(v)$ in de taal L_n die geen formule is in de taal L_{n-1} (m.a.w. in de formule ϕ komt
1.4. REDUCTIE TOT PROPOSITIE LOGICA

een constante uit C_n voor). Construeer nu C_{n+1} als de unie van C_n met al deze
nieuwe symbolen $c_{\phi(v)}$.
Neem nu $C = \bigcup_n C_n$ en $\mathcal{L}(C) = \mathcal{L} \cup C$ is Henkin's getuigen taal van \mathcal{L}.

Definitie 1.3.4 Het constant-symbool $c_{\phi(v)}$ noemen we een getuige- constante
en de Henkin axiomas van type I en II zijn de zinnen

I \quad $(\exists v \phi(v)) \rightarrow \phi(c_{\phi(v)})$

II \quad $\phi(c_{\sim \phi(v)}) \rightarrow \forall v \phi(v)$

Het idee achter deze axiomas is : als $\exists v \phi(v)$ waar is in een structuur A dan
canen we een $a \in A$ nemen dat aan $\phi(v)$ voldoet en het een andere naam geven
nl. $c_{\phi(v)}$. Als $\forall v \phi(v)$ vals is in A dan kunnen we een $b \in A$ nemen dat niet aan
$\phi(v)$ voldoet en het de naam $c_{\sim \phi(v)}$ geven.

Definitie 1.3.5 T_{Henkin} is de verzameling van alle zinnen van $\mathcal{L}(C)$ die ofwel
Henkin axiomas zijn of een quantor axioma d.i. een van volgende zinnen

III \quad $\forall v \phi(v) \rightarrow \phi(t)$ \quad t een gesloten term van $\mathcal{L}(C)$

IV \quad $\phi(t) \rightarrow \exists v \phi(v)$ \quad t een gesloten term van $\mathcal{L}(C)$

1.4. Reductie tot propositie logica

Lemma 1.4.1 Zij A een structuur voor de taal \mathcal{L} en zij $\mathcal{L}(C)$ de Henkin getuige-
taal voor \mathcal{L}. Dan bestaat er een getuigen-specialisatie $C \rightarrow A$ zodat A een model
voor T_{Henkin} is.

Bewijs : We moeten aan ieder getuige symbool $c_{\phi(v)} \in C$ een element van A
associeren zodat alle axiomas I,II,III en IV ware uitspraken zijn in A.
Begin met de Henkin axiomas van type I. We zullen de specializatie definieren
via inductie op n. Als $c_{\phi(v)} \in C_1$ dan is $\exists v \phi(v)$ een zin in de taal \mathcal{L} en kan dus
geinterpretierd worden in A. Als $A \models \exists v \phi(v)$ kies dan $a \in A$ zodat $A \models \phi(a)$
een specializeer $c_{\phi(v)}$ naar a. Als $A \models \neg \exists v \phi(v)$, specializeer dan $c_{\phi(v)}$ willekeurig.

Dit maakt alle type I axiomas met $c_{\phi(v)} \in C_1$ waar in A.

Omdat we nu een interpretatie hebben van alle constanten in C_1, kunnen we
alle zinnen in \mathcal{L}_1 interpreteren in A en we kunnen het bovenstaande argument
herhalen om alle $c_{\phi(v)} \in C_2$ te specializeren, enz. tot we een specialisatie hebben
voor alle constanten van $C = \bigcup_n C_n$ zodat alle type I axiomas waar zijn.

We beweren dat met deze specialisatie ook alle axiomas van type II,III en IV
ware uitspraken zijn in A.

Veronderstel dat een type II axioma niet waar is in A bv.

$$\phi(c_{\sim \phi(v)}) \rightarrow \forall v \phi(v)$$
Dit betekent dat de hypothese waar is maar de conclusie vals. Dus, $\exists v \neg \phi(v)$ is waar in \mathcal{A} maar dan weten we via de type I axiomas dat ook $\neg \phi(c_{\neg \phi(v)})$ waar is in \mathcal{A} dus de hypothese kon niet waar zijn.

Verder zijn de quantifier axiomas van type III en IV altijd waar onafhankelijk van de interpretatie.

Definitie 1.4.1 Een canoniek model voor de getuige taal $\mathcal{L}(C)$ is een model \mathcal{A} zodat de interpretatiemap $C \to \mathcal{A}$ surjectief is.

Stelling 1.4.1 (reductie-stelling) Zij \mathcal{L} een eerste orde taal en $\mathcal{L}(C)$ haar Henkin getuige taal. Voor iedere verzameling T van eerste orde zinnen in \mathcal{L} zijn de volgende uitspraken equivalent

1. T heeft een model, d.i. er bestaat een structuur \mathcal{A} van \mathcal{L} zodat $\mathcal{A} \models T$

2. Er bestaat een canoniek model voor $\mathcal{L}(C)$ zeg \mathcal{A} zodat $\mathcal{A} \models T$

3. De verzameling zinnen $T \cup T_{\text{Henkin}} \cup \text{Eq}$ is consistent voor de propositie logica waarbij Eq de verzameling gelijkheidsaxiomas voor $\mathcal{L}(C)$ is die zinnen in $\mathcal{L}(C)$ zijn

Bewijs: De implicatie $(2) \Rightarrow (1)$ is triviaal en $(1) \Rightarrow (3)$ volgt uit het vorige lemma en lemma 1.3.1, dus we moeten enkel $(3) \Rightarrow (2)$ aantonen.

Wegens (3) mogen we een waarheids-specialisatie v kiezen op alle priem zinnen van $\mathcal{L}(C)$ zodat $V(\phi) = t$ voor alle $\phi \in T \cup T_{\text{Henkin}} \cup \text{Eq}$. We gaan nu een canoniek model \mathcal{A} construeren zodanig dat voor alle zinnen in $\mathcal{L}(C)$ geldt

$$\mathcal{A} \models \phi \text{ as } V(\phi) = t$$

De functie van de axiomas T_{Henkin} is dat V moet voldoen aan de volgende condities

- $V(\exists v \phi(v)) = t$ as $V(\phi(c_{\phi(v)})) = t$

- $V(\forall v \phi(v)) = t$ as $V(\phi(t)) = t$ voor alle gesloten termen t van $\mathcal{L}(C)$

Deze condities laten ons toe om ons model \mathcal{A} te bouwen uit de constanten van C.

Teneinde \mathcal{A} te definieren moeten we volgende deelproblemen oplossen

1. Beschrijf de verzameling \mathcal{A}
2. Definieer voor ieder n-voudig relatie symbool $R \in \mathcal{L}$ een interpretatie $R_\mathcal{A}$
3. Definieer voor ieder n-voudig functie symbool $f \in \mathcal{L}$ een interpretatie $f_\mathcal{A}$
4. specializeer ieder constant symbool $c \in \mathcal{L} \cup C$ tot een element $c_\mathcal{A} \in \mathcal{A}$
5. Doe dit alles zo dat $\mathcal{A} \models \phi$ als en slechts dan als $V(\phi) = t$ voor alle zinnen $\phi \in \mathcal{L}(C)$

We zullen deze deelproblemen nu oplossen.
(1) : Definieer een equivalentie-relatie \approx op C via

$$c \approx d \text{ as } v((c = d)) = t$$

en ga na dat de gelijkheidsaxiomas impliceren dat dit inderdaad een equivalentierelatie op C is. We definieren nu \mathcal{A} als de equivalentie klassen C/\approx.
(2) : Definieer $R_{\mathcal{A}}$ via

$$(\overline{c}_1, \ldots, \overline{c}_n) \in R_{\mathcal{A}} \text{ as } v(R(c_1, \ldots, c_n)) = t$$

We moeten aantonen dat dit goed gedefinieerd is.dus zijn

$$\overline{c}_1 = \overline{d}_1, \ldots, \overline{c}_n = \overline{d}_n$$

en $(\overline{c}_1, \ldots, \overline{c}_n) \in R_{\mathcal{A}}$. Maar dit is een gevolg van het feit dat

$$c_1 = d_1 \land \ldots \land c_n = d_n \land R(c_1, \ldots, c_n) \rightarrow R(d_1, \ldots, d_n)$$

een gelijkheidsaxioma is en v is t op alle componenten van de hypothese dus ook $v(R(d_1, \ldots, d_n)) = t$.
(3) : Zij f een n-voudig functie symbool van \mathcal{L} en $c_1, \ldots, c_n \in C$. We beweren dat er een $c \in C$ bestaat met $v(f(c_1 \ldots c_n) = c) = t$.
Beschouw de formule $\phi(x)$ gegeven door $(f(c_1 \ldots c_n) = x)$. Als $V(\exists v \phi(v)) = t$ dan moet wegens een type I Henkin axioma ook $V(\phi(c_{\phi(v)})) = t$ of m.a.w. $v(f(c_1 \ldots c_n) = c_{\phi(v)}) = t$ en de bewering is waar.
Dus veronderstel dat $V(\exists v \phi(v)) = f$. Een type IV axioma in T_{Henkin} is van de vorm

$$\phi(f(c_1 \ldots c_n)) \rightarrow \exists v \phi(v)$$

en dus moet ook $V(\phi(f(c_1 \ldots c_n))) = f$. Wegens definitie van $\phi(x)$ betekent dit dat V de waardeheidswaarde f associeert aan de uitspraak $(f(c_1 \ldots c_n) = f(c_1 \ldots c_n) = c_{\phi(v)}) = t$ met de vorm

$$(\overline{c}_1, \ldots, \overline{c}_n) = \overline{c} \text{ voor een } c \in C \text{ zodat } V(f(c_1 \ldots c_n) = c) = t$$

Een argument zoals in (2) boven toont aan dat f_A goed gedefinieerd is.
(4) : Als $c \in C$ dan definieren we $c_A = \overline{c}$. Als d een constant symbool uit \mathcal{L} is dan kunnen we met een analoog argument als in (3) aantonen dat er een $c \in C$ bestaat met $v(d = c) = t$ en dan stellen we $d_A = \overline{c}$. Wederom is alles goed gedefinieerd.
(5) : We hebben reeds aangetoond dat voor alle atoom-zinnen ϕ onze interpretaties de eigenschap hebben dat

$$\mathcal{A} \models \phi \text{ as } v(\phi) = t$$
Om dit ook te bewijzen voor alle zinnen gebruiken we inductie op de lengte van de formule. Zinnen met enkel logische connectie symbolen zijn triviaal. Bvb. stel dat \(A \models (\phi \land \psi) \) alsa (per definitie van \(\models \)) \(A \models \phi \) en \(A \models \psi \) alsa (per inductie) \(V(\phi) = t \) en \(V(\psi) = t \) alsa \(V((\phi \land \psi)) = t \).

Veronderstel nu dat \(\phi \) van de vorm is \(\exists x \psi(x) \) en stel dat \(V(\phi) = t \) dan bestaat er via de condities in het begin van dit bewijs een \(c \) zodat \(V(\psi(c)) = t \) en dus bij inductie \(A \models \psi(c) \) en bijgevolg \(A \models \exists x \psi(x) \) en dus \(A \models \phi \).

Omgekeerd als \(V(\phi) = f \), d.i. \(V(\exists x \psi(x)) = f \) en dus via \(T_{\text{Henkin}} \) ook \(V(\psi(t)) = f \) voor alle gesloten termen \(t \) van \(L(C) \). In het bijzonder geldt voor alle \(c \in C \) dat \(V(\psi(c)) = f \). Per inductie geldt dan \(A \models \neg \psi(c) \) voor alle \(c \in C \) en omdat \(A \) een canoniek model is volgt dan \(A \models \neg \exists x \psi(x) \). Dus hebben we aangetoond dat \(A \models \exists x \psi(x) \) alsa \(V(\exists x \psi(x)) = t \). Als \(\phi \) begint met \(\forall \) kunnen we een analoog argument gebruiken.

\[\Box \]

1.5 Eerste orde logica is compact

Stelling 1.5.1 (Gödel-Malcev compactheid) Zij \(T \) een verzameling eerste-orde zinnen in een taal \(L \). Als er een model bestaat voor ieder eindig deel \(T_0 \) van \(T \), dan bestaat er een model voor \(T \).

Bewijs: We moeten aantonen via de reductie stelling dat \(T \cup T_{\text{Henkin}} \cup Eq \) consistent is in de betekenis van de propositie logica. Wegens compactheid van de propositie logica volstaat het echter te bewijzen dat voor ieder eindig deel \(T_0 \) van \(T \) de verameling \(T_0 \cup T_{\text{Henkin}} \cup Eq \) consistent is. Dit is echter, wegens de reductie-stelling-equivalent met de veronderstelling dat \(T_0 \) een model heeft en dus zijn we klaar.

In toepassingen gebruikt men meestal een andere vorm van de compactheid. Met \(T \models \psi \) noteren we dan \(\psi \) een logisch gevolg is van \(T \) in de betekenis dat \(\psi \) waar is in alle modellen van \(T \).

Gevolg 1.5.1 Zij \(T \cup \{ \psi \} \) een verzameling eerste orde zinnen in een taal \(L \). Als \(T \models \psi \) dan bestaat er een eindige deelverameling \(T_0 \) van \(T \) zodat \(T_0 \models \psi \).

Bewijs: Pas de compactheidsstelling toe op de verameling \(T \cup \{ \neg \psi \} \). Uit de onderstelling volgt dat er geen model bestaat voor deze verameling, maar dan bestaat er wegens compactheid een eindige \(T_0 \) in \(T \) zodat er geen model bestaat voor \(T_0 \cup \{ \neg \psi \} \). Ofsel heeft \(T_0 \) zelf geen model maar dan is de bewering triviaal voldaan ofwel volgt inderdaad \(T_0 \models \psi \).

We zullen als toepassing bewijzen dat sommige wiskundige theorieën niet eindig axiomatiseerbaar zijn. We werken in de taal \(L_{\text{Ab}} \) der Abelse groepen.
Definitie 1.5.1 Een Abelse groep G is torsie-vrij als

$$\forall n \geq 1 \forall x \ (x \neq 0 \rightarrow nx \neq 0)$$

Dit is evenwel geen eerste-orde zin vermits de eerste quantifier n niet loopt in G maar in de verzameling \mathbb{N} de positief gehele getallen. We kunnen dit axioma echter vervangen door een aftelbare lijst eerste orde axiomas, nl.

$$(tf)_n \quad \forall x \ (x \neq 0 \rightarrow nx \neq 0)$$

Bijgevolg is een torsie-vrije Abelse groep G een model voor de 4 axiomas van Abelse groepen en de aftelbaar oneindige axiomas $(tf)_n$.

Stelling 1.5.1 De theorie der torsie-vrije Abelse groepen is niet eindig axiomatiseerbaar in eerste-orde logica. dat is, iedere eindige verzameling eerste-orde zinnen waar in alle torsie-vrij Abelse groepen is ook waar in sommige torsie Abelse groepen.

Bewijs: Zij $\{\psi_1, ..., \psi_n\}$ een eindige verzameling eerste-orde zinnen in \mathcal{L}_{Ab} die waar zijn voor alle torsie-vrij Abelse groepen en stel $\psi = (\psi_1 \land ... \land \psi_n)$. We moeten aantonen dat ψ ook waar is in een torsie Abelse groep. Zij T de 4 axiomas van Abelse groepen met alle axiomas $(tf)_n$ dan is T een axiomasysteem voor de torsie-vrij Abelse groepen. Bij onderstelling hebben we $T \models \psi$ en dus hebben we via het gevolg van de compactheidsstelling een eindige deelverzameling T_0 in T zodat $T_0 \models \psi$. Neem nu N de maximale n zodat $(tf)_n$ in T_0 zit en neem een priemgetal $p > N$. Dan voldoet de torsie Abelse groep $\mathbb{Z}/p\mathbb{Z}$ aan alle axiomas van T_0 en dus ook aan ψ.

De theorie der torsie-vrij Abelse groepen is tenminste nog (aftelbaar) axiomatiseerbaar in eerste-orde zinnen. Bekijk nu de theorie der torsie Abelse-groepen. Een Abelse groep G noemen we torsie als G voldoet aan

$$\forall x \exists n \geq 1 \ (nx = 0)$$

Dit is geen eerste-orde zin vermits n weer over \mathbb{N} loopt. We zouden natuurlijk het vorige kunnen imiteren en deze zin trachten te vervangen door een collectie van eerste-orde zinnen. Maar deze zin is equivalent met

$$\forall x \ (x = 0 \lor 2x = 0 \lor ... \lor nx = 0 \lor ...)$$

maar dit is geen eerste-orde zin want niet eindig. Maar misschien waren we niet slim genoeg en bestaan er andere eerste-orde zinnen die de torsie-groepen karakterizeren. Edoch,

Stelling 1.5.2 De theorie der torsie Abelse groepen is niet axiomatiseerbaar in eerste-orde logica. Dat is, de verzameling van eerste-orde zinnen in \mathcal{L}_{Ab} die waar zijn in alle torsie Abelse groepen is ook waar in sommige Abelse groepen die niet torsie zijn.
Bewijs: Zij $G = \oplus_n \mathbb{Z}/n\mathbb{Z}$ dan is G een torsie Abelse groep en voldoet dus aan alle eerste-orde zinnen waar voor alle torsie Abelse groepen. We gaan nu aantonen dat er een niet torsie Abelse groep H bestaat zodat G en H toch voldoan aan precies dezelfde eerste-orde zinnen in \mathcal{L}_{Ab}.

Neem een nieuw constant symbool c en laat T de verzameling zijn van alle eerste orde zinnen in \mathcal{L}_{Ab} die waar zijn in G samen met de eerste orde zinnen $2c \neq 0, 3c \neq 0$ enzovoort, dus T is een verzameling eerste-orde zinnen in $\mathcal{L}_{Ab} \cup \{c\}$. Als T een model H heeft dan is H een Abelse groep die voldoet aan alle eerste orde zinnen in \mathcal{L}_{Ab} waar voor alle torsie groepen (want waar in G) maar die toch niet torsie is want c_H is een niet-torsie element.

We gaan nu aantonen dat ieder eindig deel T_0 van T een model heeft, nl. G. Neem nl. N de maximale n zodat de zin $nc \neq 0$ voorkomt in T_0 dan voldoet G aan T_0 want neem $p > N$ priem dan kunnen we voor c_G de voortbrenger van de component $\mathbb{Z}/p\mathbb{Z}$ nemen. Wegens compactheid heeft dus ook T een model en klaar.

\[\square\]

1.6 De Löwenheim-Skolem stelling

Stelling 1.6.1 (Löwenheim-Skolem) Zij κ een oneindig cardinaal getal en T een verzameling eerste-orde zinnen in een taal \mathcal{L} met cardinaliteit tenhoogste κ. Als er een model bestaat voor T dan bestaat er een model voor T met cardinaliteit tenhoogste κ.

Bewijs: Vermits iedere formule in de taal \mathcal{L} een eindige string symbolen is bestaan er tenhoogste κ formules van \mathcal{L}. Herinner de definitie van de getuigen taal $\mathcal{L}(C)$ waarbij $C = \bigcup_n C_n$. Per inductie heeft iedere C_n cardinaliteit $\leq \kappa$ en dus geldt hetzelfde voor C en dus voor $\mathcal{L}(C)$. Maar dan heeft ieder canoniek model voor $\mathcal{L}(C)$ cardinaliteit tenhoogste κ en volgt de stelling uit de reductie-stelling.

\[\square\]

We hebben allemaal ooit eens een constructie gezien van \mathbb{R} als geordend lichaam en een bewijs dat bepaalde axiomasa \mathbb{R} op isomorfisme na bepalen. Deze axiomasa kunnen echter niet allen van eerste orde zijn.

Stelling 1.6.1 Er bestaat geen verzameling eerste orde zinnen in de taal der geordende lichamen $\mathcal{L}_{ich} \cup \{\leq\}$ die \mathbb{R} op isomorfisme na bepalen.

Bewijs: De taal is eindig, dus zijn alle eerste-orde zinnen in $\mathcal{L}_{ich} \cup \{\leq\}$ die waar zijn in \mathbb{R} tenhoogste aftelbaar. Wegens Löwenheim-Skolem weten we dan dat er een aftelbaar model bestaat voor deze verzameling zinnen en \mathbb{R} is over aftelbaar, klaar.

\[\square\]
1.7. HILBERT-STIJL FORMELE SYSTEMEN

Welk van de gewone axiomas van \(\mathbb{R} \) is dan niet van eerste-orde? Het volledigheids-axioma

\[\forall X \subseteq \mathbb{R} \ (X \neq \emptyset \text{ en begrensd } \rightarrow X \text{ heeft een kleinste bovengrens}) \]

is niet eerste-orde omdat de quantifier niet loopt in \(\mathbb{R} \) maar in de deelverzamelingen van \(\mathbb{R} \). Kun je als oefening de uitspraak tussen de haken in eerste-orde in \(\mathcal{L}_{\text{lich}} \cup \{\leq\} \) vertalen?

Maar wat gebeurt er als we onze taal uitbreiden? Neem

\[\mathcal{L}_{\mathbb{R}} = \mathcal{L}_{\text{lich}} \cup \{\leq\} \cup \{c_r : r \in \mathbb{R}\} \]

dat is, we voegen voor elk reeel getal een constant symbool toe. Volstaat deze taal?

Stelling 1.6.2 Er bestaat een echte lichaamsuitbreiding \(\mathbb{R} \subseteq ^*\mathbb{R} \) dat een model is voor alle ware eerste-orde zinnen voor \(\mathbb{R} \) in \(\mathcal{L}_{\mathbb{R}} \).

Bewijs: Voeg een nieuwe constante \(c \) toe aan de taal en beschouw de verzameling \(T \) van alle eerste orde zinnen in \(\mathcal{L}_{\mathbb{R}} \) die waar zijn in \(\mathbb{R} \) samen met de zinnen \((c > c_r)\) (een voor elke \(r \in \mathbb{R} \)). Ieder eindig deel \(T_0 \) van \(T \) heeft \(\mathbb{R} \) als model, dus bestaat er een model voor \(T \) zeg \(^*\mathbb{R} \) dat \(\mathbb{R} \) als echt deellichaam bevat vermits \(c_{^*\mathbb{R}} \notin \mathbb{R} \).

\(^*\mathbb{R} \) noemen we een niet-standaard model van \(\mathbb{R} \), het bevat infinitesimalen zoals \(\frac{1}{c} \).

Oefening 1.6.1 Gebruik he bovenstaande bewijs-idee om de volgende twee sterkere versies van de Löwenheim-Skolem stelling aan te tonen.

Stelling 1.6.2 (‘naar beneden’ Löwenheim-Skolem) Zij \(T \) een verzameling eerste-orde zinnen in een taal \(\mathcal{L} \) van cardinaliteit \(\kappa \). Zij \(\kappa < \lambda \) en stel dat \(T \) een model heeft van cardinaliteit \(\lambda \). Dan heeft \(T \) een model van cardinaliteit \(\kappa \).

Stelling 1.6.3 (‘naar boven’ löwenheim-Skolem) Zij \(T \) een verzameling eerste-orde zinnen in een taal \(\mathcal{L} \) van cardinaliteit \(\kappa \). Stel dat er een model bestaat voor \(T \) van cardinaliteit \(\lambda \geq \kappa \) en zij \(\mu > \lambda \). Dan bestaat er een model voor \(T \) van cardinaliteit \(\mu \).

1.7 Hilbert-stijl formele systemen

Zij \(\mathcal{L} \) een taal en laat alle formules eerste-orde formules zijn van \(\mathcal{L} \). Met \(v \) zullen we steeds een variabele noteren en met \(t \) een term van \(\mathcal{L} \). Gegeven een verzameling eerste-orde zinnen \(T \) dan willen we definieren wat we verstaan onder afleidingen van \(T \), dat is, welke zinnen we kunnen bewijzen uit het axioma stelsel \(T \). Het formele Hilbert systeem \(\mathbb{H} \) bestaat uit
Axiomas van \mathbb{H}:

1. alle tautologieën
2. alle gelijkheids axiomas
3. alle formules van 1 van beide vormen

$$(\forall \nu \phi(\nu)) \rightarrow \phi(t)$$

$$\phi(t) \rightarrow \exists \nu \phi(\nu)$$

Afleidingsregels van \mathbb{H}:

1. (Modus Ponens) Uit $(\phi \rightarrow \psi)$ en ϕ leiden we ψ af
2. (Generalizatie regels) Als de variabele ν niet vrij is in ϕ, dan

$$\text{Uit } \phi \rightarrow \psi(\nu) \text{ leidt af } \phi \rightarrow \forall \nu \psi(\nu)$$

$$\text{Uit } \psi(\nu) \rightarrow \phi \text{ leidt af } \exists \nu \psi(\nu) \rightarrow \phi$$

Deze regels worden vaak schematisch gescreven als

$$\frac{(\phi \rightarrow \psi)}{\psi} \quad \frac{\phi \rightarrow \psi(\nu)}{\phi \rightarrow \forall \nu \psi(\nu)} \quad \frac{\psi(\nu) \rightarrow \phi}{\exists \nu \psi(\nu) \rightarrow \phi}$$

en als ν niet vrij is in ϕ, dan ook

$$\frac{\phi \rightarrow \psi(\nu)}{\phi \rightarrow \forall \nu \psi(\nu)} \quad \frac{\psi(\nu) \rightarrow \phi}{\exists \nu \psi(\nu) \rightarrow \phi}$$

Definitie 1.7.1 Een bewijs van ϕ uit een verzameling eerste-orde zinnen T (in het formele systeem \mathbb{H}) is een eindige rij formules

$$\psi_1, \psi_2, \ldots, \psi_n$$

met $\psi_n = \phi$ en iedere ψ_i is of een axioma van \mathbb{H} of een element van T of werd afgeleid uit ψ_i met $j < i$ via de afleidingsregels van \mathbb{H}.

We zeggen dat ϕ bewijsbaar is uit T als er een bewijs bestaat van ϕ uit T. We noteren dit met $T \vdash \phi$.

1.8 Gödels volledigheid stelling

Lemma 1.8.1 Zij T een verzameling eerste-orde zinnen in \mathcal{L} en zij A een model voor T. Als $\phi(v_1, \ldots, v_k)$ bewijsbaar is uit T, dan geldt $A \models \forall v_1 \ldots \forall v_k \phi(v_1, \ldots, v_k)$.

Bewijs: Vermits alle axiomas van \mathbb{H} en T waar zijn in A en alle afleidingsregels geïnterpreteerd in A waar zijn kunnen we het lemma bewijzen per induktie op de lengte van een bewijs van ϕ. \square
1.8. GÖDELS VOLLEDIGHEID STELLING

Lemma 1.8.2 (hulp-lemma) Zij T een verzameling eerste-orde zinnen in L.

1. Als $T \vdash (\phi \to \psi)$ en $T \vdash (\neg \phi \to \psi)$, dan $T \vdash \psi$

2. Als $T \vdash (\phi \to \theta) \to \psi$, dan ook $T \vdash (\neg \phi \to \psi)$ en $T \vdash (\theta \to \psi)$

3. Als v niet voorkomt in ψ en als $T \vdash ((\exists y \phi(y) \to \phi(v)) \to \psi)$ dan ook $T \vdash \psi$

4. Als v niet voorkomt in ψ en als $T \vdash (\phi(v) \to \forall y \phi(y)) \to \psi$ dan ook $T \vdash \psi$

Bewijs:

(1) : Door de waarheidstabel op te schrijven verifiëren we dat

$$((\phi \to \psi) \to ((\neg \phi \to \psi) \to \psi))$$

een tautologie is. Schrijf nu een bewijs van $(\phi \to \psi)$ en pas modus ponens toe om
een bewijs van $(\neg \phi \to \psi) \to \psi$ te krijgen. Schrijf nu een bewijs van $(\neg \phi \to \psi)$,
en vervolledig met modus ponens het bewijs van ψ.

(2) : Merk op dat volgende uitspraken tautologieën zijn

$$(((\phi \to \theta) \to \psi) \to (\neg \phi \to \psi))$$

$$(((\phi \to \theta) \to \psi) \to (\theta \to \psi))$$

en pas modus ponens toe na een bewijs te hebben opgeschreven van $(\phi \to \theta) \to \psi$.

(3) : Uit (2) weten we

$$T \vdash (\neg \exists y \phi(y) \to \neg \psi)$$

en $T \vdash \phi(v) \to \psi$

Als we de tweede generalisatie regel toepassen (wat kan omdat v niet voorkomt
in ψ) volgt uit de tweede uitspraak dat

$$T \vdash (\exists y \phi(y) \to \psi)$$

maar dan ook via (1) : $T \vdash \psi$.

(4) : Analoog met (3) als oefening.

Stelling 1.8.1 (Gödel's volledigheid stelling) Zij T een verzameling eerste-orde zinnen in een taal L. Een eerste-orde zin ϕ is bewijsbaar uit T als en slechts dan als ϕ waar is in alle modellen van T. Symbolisch,

$$T \models \phi \text{ als } T \vdash \phi$$

Bewijs : Veronderstel dat $T \models \phi$. Uit de reductie-stelling en compactheid volgt
dat er een eindig deel S is van $T \cup T_{Hewkin} \cup Eq$ zodat $S \cup \{\neg \phi\}$ inconsistent is
in de betekenis van de propositie logica.
Zij $\alpha_1, ..., \alpha_N$ die elementen van S die ofwel behoren tot $T \cup Eq$ ofwel type III of type IV-axiomas. De resterende elementen van $S - \beta_i$ zijn type I of type II Henkin axiomas en we ordenen ze als volgt.

Herinner de definitie van de talen $L = L_0 \subseteq L_1 \subseteq ...$ zodat $L(C) = \bigcup_n L_n$.

Definieer de rang van een $\phi \in L(C)$ als de kleinste n zodat $\phi \in L_n$. Kies β_1 een type I of type II Henkin axioma van maximale rang in S, β_2 van maximale rang in $S - \{\beta_1\}$ enzovoorts.

De bedoeling van deze ordening $\beta_1, \beta_2, ..., \beta_M$ is dat de getuige constante waarover β_j handelt niet voorkomt in $\beta_{j+1}, ..., \beta_M$. Bv. als β_1 het axioma is

$$\exists \forall \eta(v) \rightarrow \eta(c_\eta(v))$$

dan komt $c_{\eta(v)}$ niet voor in $\beta_2, ..., \beta_M$ wegens maximaliteit van de rang van β_1.

Vermits $S \cup \{\neg \phi\}$ niet consistent is in de betekenis van de proposition logica volgt dat

$$(\alpha_1 \rightarrow \alpha_2 \rightarrow ... \rightarrow \alpha_N \rightarrow \beta_1 \rightarrow ... \rightarrow \beta_M \rightarrow \phi)$$

(waar we de haakjes laten werken van rechts naar links, d.i. $(... \rightarrow (\beta_{M-1} \rightarrow (\beta_M \rightarrow \phi)) ...)$. Een tautologie is. Immers de enige manier om hieraan een waarheids waarde te associëren is met alle $V(\alpha_i) = V(\beta_j) = t$ en $V(\phi) = f$ maar dan is $S \cup \{\neg \phi\}$ consistent.

Vervang nu in alle α_i en β_i elke voorkomende getuige constante door een nieuwe variabele en noteer de bekomen formule met α'_i resp. β'_i dan is ook

$$(\alpha'_1 \rightarrow ... \rightarrow \alpha'_N \rightarrow \beta'_1 \rightarrow ... \rightarrow \beta'_M \rightarrow \phi)$$

een tautologie (merk op dat ϕ geen getuigen constanten bevat).

Nu zijn alle α'_i ofwel logische axiomas of elementen van T dus kunnen we N keer modus ponens toepassen om een bewijs te krijgen van

$$(\beta'_1 \rightarrow ... \rightarrow \beta'_M \rightarrow \phi)$$

Maar elk van de β'_j heeft nu de vorm voorkomend in delen (3) en (4) van het hulp-lemma en de restrictie daarin voorkomend volgt uit de speciale ordening van de β_j. Dus mogen we dit hulp-lemma M keer toepassen en krijgen uiteindelijk een bewijs van ϕ. Dus $T \vdash \phi$.

De omgekeerde implicatie volgt uit lemma 1.8.1. \[\square\]
Hoofdstuk 2

Model theorie

2.1 Definities

Zij \mathcal{L} een taal en \mathcal{A} een structuur voor \mathcal{L}. Met $Th(\mathcal{A})$ zullen we de verzameling noteren van alle eerste-orde zinnen van \mathcal{L} die waar zijn in \mathcal{A}.

Definitie 2.1.1 Zij \mathcal{A} en \mathcal{B} structuren voor \mathcal{L} en zij $f : \mathcal{A} \to \mathcal{B}$ een afbeelding.

1. We noemen f een \mathcal{L}-homomorfisme en noteren $f : \mathcal{A} \to \mathcal{B}$ als

 - $f(c_\mathcal{A}) = c_\mathcal{B}$ voor elk constant symbool c in \mathcal{L}
 - $f(F_\mathcal{A}(a_1, ..., a_n)) = F_\mathcal{B}(f(a_1), ..., f(a_n))$ voor elk n-voudig functie symbool F in \mathcal{L}
 - $(a_1, ..., a_n) \in R_\mathcal{A} \Rightarrow (f(a_1), ..., f(a_n)) \in R_\mathcal{B}$ voor elk n-voudig relatie symbool R van \mathcal{L}

2. We noemen f een \mathcal{L}-isomorfisme als het een bijectief \mathcal{L}-homomorfisme is met voor ieder n-voudig relatie symbool R

 $$(a_1, ..., a_n) \in R_\mathcal{A} \text{ as } (f(a_1), ..., f(a_n)) \in R_\mathcal{B}$$

Als er een \mathcal{L}-isomorfisme $f : \mathcal{A} \to \mathcal{B}$ is dan noteren we $\mathcal{A} \cong \mathcal{B}$

Definitie 2.1.2 We noemen twee \mathcal{L}-structuren elementair equivalent, en we noteren $\mathcal{A} \equiv \mathcal{B}$ asa voor alle eerste-orde zinnen ϕ van \mathcal{L} geldt

$$\mathcal{A} \models \phi \text{ asa } \mathcal{B} \models \phi$$

Dus, $\mathcal{A} \equiv \mathcal{B} \text{ asa } Th(\mathcal{A}) = Th(\mathcal{B})$ en we kunnen \mathcal{A} en \mathcal{B} niet logisch van elkaar onderscheiden (in de taal \mathcal{L}).

Oefening 2.1.1 Als $\mathcal{A} \cong \mathcal{B}$ dan $\mathcal{A} \equiv \mathcal{B}$

23
Definitie 2.1.3 We noemen A een L-deel structuur van B en noteren $A \subseteq B$ als A een deelverzameling is van B en de natuurlijke inclusie een L-homomorfisme is.

Dikwijls willen we in een bepaalde taal L een welbepaalde structuur A beschrijven. Daarom is het vaak natuurlijk de taal L uit te breiden met additionele constante symbolen nl. $\bar{a}: a \in A$. Deze taal noemen we $L(A)$ en de natuurlijke specializatie $\bar{a} \rightarrow a$ maakt van A een $L(A)$-structuur.

Definitie 2.1.4 $\text{Diag}(A)$ is de verzameling gesloten atomen (of hun negaties) van $L(A)$ die waar zijn in A.

Definitie 2.1.5 We noemen A een elementaire deelstructuur van B (of ook, B een elementaire uitbreiding van A) en we noteren $A \preceq B$ als $A \subseteq B$ en voor alle formules $\phi(x_1, \ldots, x_n) \in L$ en alle $a_1, \ldots, a_n \in A$ geldt

$A \models \phi(\bar{a}_1, \ldots, \bar{a}_n)$ asa $B \models \phi(\bar{a}_1, \ldots, \bar{a}_n)$

We zeggen dan dat A en B dezelfde ware zinnen hebben met parameters in A.

Oefening 2.1.2 Als $A \preceq B$ dan $A \equiv B$.

Oefening 2.1.3 Noem A isomorf ingebed in B als er een isomorisme f bestaat van A naar een deel structuur van B. Bewijs nu dat A isomorf ingebed is in B asa B een model is van $\text{Diag}(A)$.

Nu bekijken we een axioma stelsel T in de taal L, dat is T is een verzameling eerste-orde zinnen in L (bvb. kunnen we voor $T = T(h(A))$ nemen.

Definitie 2.1.6 We noemen T volledig indien voor alle eerste-orde zinnen ϕ in L geldt $T \vdash \phi$ of $T \vdash \neg \phi$.

Wegens Gődels volledigheid stelling weten we dat T volledig is asa alle modellen van T elementair equivalent zijn. In de volgende twee secties zullen we voorbeelden geven van volledige theorieën.

2.2 De stelling van Vaught

Vroeger dacht men dat men een bepaald model zou kunnen karakterizeren op isomorfisme na. Dat is, men wilde een axioma stelsel T vinden zodanig dat wan- neer A en B modellen zijn van T dan $A \cong B$. De Löwenheim-Skolem stellingen tonen echter aan dat dit een onbereikbaar doel is (tenzij we over een eindig model praten).
2.2. **DE STELLING VAN VAUGHT**

Definitie 2.2.1 Zij κ een cardinaal getal. Een theorie noemen we κ-categorisch als elke twee modellen van cardinaliteit κ isomorf zijn en als er tenminste een model met cardinaliteit κ bestaat.

Oefening 2.2.1 Bewijs de volgende beweringen

1. De theorie der oneindige verzamelingen is κ-categorisch voor alle oneindige κ.

2. De theorie der dicht geordende verzamelingen zonder eind-punten is \aleph_0-categorisch.

3. De theorie der deelbare torsie-vrij Abelse groepen is κ-categorisch voor alle $\kappa > \aleph_0$.

4. De theorie der algebraisch gesloten lichamen (met vaste karakteristiek) is κ-categorisch voor alle $\kappa > \aleph_0$.

Stelling 2.2.1 (Vaught’s stelling) Zij T een theorie in een aftelbare taal \mathcal{L}. Als T geen eindige modellen heeft en κ-categorisch is voor een bepaald cardinaal getal κ, dan is T volledig.

Bewijs: Veronderstel dat T niet volledig is. Dan bestaat er een zin ϕ zodat $T \nvdash \phi$ en $T \nvdash \neg \phi$. Wegens de volledigheidsstelling van Gödel moeten er dus modellen A en B van T bestaan met

$$A \models \phi \text{ en } B \models \neg \phi$$

Vermits A en B oneindige modellen zijn kunnen we de twee Löwenheim-Skolem's toepassen om modellen te vinden A' en B' beiden van cardinaliteit κ zodanig dat

$$A \equiv A' \text{ en } B \equiv B'$$

(oefening : waarom?) maar dan moet wegens onderstelling $A' \cong B'$ en bijgevolg $A' \equiv B'$ wat in tegenspraak is met de uitspraken $A' \models \phi$ en $B' \models \neg \phi$. □

Bijgevolg zijn alle bovenstaande theorieën volledig. In het bijzonder hebben we

Gevolg 2.2.1 (Lefschetz's principee) Als een zin in de eerste-orde taal van de lichamen waar is in C (het lichaam van de complexe getallen) dan is die waar voor alle algebraisch gesloten lichamen van karakteristiek 0.
2.3 Quantoren eliminatie

Een andere mogelijkheid om volledigheid van een theorie te bewijzen is gebaseerd op eliminatie van de quantoren. Sommige theorieën T hebben de eigenschap dat we voor elke formule ϕ een formule ψ kennen vinden zonder quantoren en $T \vdash \phi \leftrightarrow \psi$.

We zullen deze eigenschap bewijzen voor de theorie DO van dicht geordende verzamelingen zonder eindpunten.

Definitie 2.3.1 *De taal van DO omvat twee relatie symbolen $<$ en $=$ en DO is de volgende verzameling eerste orde zinnen*

\[
\forall x \ y \ z((x < y \land y < z) \rightarrow x < z) \\
\forall x \ y(\neg(x = y) \rightarrow x < y \lor y < x) \\
\forall x \ y(x < y \rightarrow \exists z(x < z \land z < y)) \\
\forall x(\exists y(y < x) \land \exists z(x < z))
\]

Om te beginnen kunnen we negaties van atomen elimineren door zinnen in atomen wegens

\[
DO \vdash \neg x = y \leftrightarrow (x < y \lor y < x) \\
DO \vdash \neg x < y \leftrightarrow (x = y \lor y < x)
\]

Dus kunnen we elke ϕ met $FV(\phi) = \{y_1, \ldots, y_n\}$ in de vorm krijgen

\[
\phi' := Q_1 x_1 Q_2 x_2 \ldots Q_m x_m \psi(y_1, \ldots, y_n, x_1, \ldots, x_m)
\]

waarbij iedere $Q x$ een quantor is $\exists x$ of $\forall x$, en wegens voorgaande kunnen we $\psi = \bigvee_j \psi_j$ schrijven met alle ψ_j een \land van atomen. We gaan nu alle quantoren elimineren te beginnen met de meest inwendige x_m.

We moeten dus formules van de vorm $\exists x_m \land \sigma_p$ waar iedere σ_p een atoom formule is. Nu reduceren we, waarbij we noteren $\phi \leftrightarrow \psi$ voor $DO \vdash \phi \leftrightarrow \psi$.

1. Als x_m niet voorkomt in $\land \sigma_p$ dan kunnen we de quantor weglaten

2. Anders hergroeperen we de atomen die x_m bevatten en de rest en krijgen dus

\[
\land \sigma_p \leftrightarrow \land_i x_m < u_i \land \land_j v_j < x_m \land \land_k w_k = x_k \land \psi
\]

waar x_m niet voorkomt in ψ. Als we deze formule noteren met $\exists x_m (\chi \land \psi)$ maar dit is \leftrightarrow met $\exists x_m \chi \land \psi$ dus we kunnen ons beperken om $\exists x_m \chi$ te vereenvoudigen.

Dit kunnen we doen door gebruik te maken van de axiomas van DO als volgt
2.3. **QUANTOREN ELIMINATIE**

- Als \(\chi = \bigwedge_i x_m < u_i \wedge \bigwedge_j v_j < x_m \wedge \bigwedge_k w_k = x_m \) dan is
 \[
 \exists x_m, \chi \leftrightarrow \bigwedge_i w_0 < u_i \wedge \bigwedge_j v_j < w_0 \wedge \bigwedge_k w_0 = w_k
 \]
 met \(w_0 \) bvb. de kleinste der \(w_k \).

- Als \(\chi = \bigwedge_i x_m < u_i \wedge \bigwedge_j v_j < x_m \) dan
 \[
 \exists x_m, \chi \leftrightarrow \bigwedge_i v_j < u_i
 \]

- Als \(\chi = \bigwedge_i x_m < u_i \wedge \bigwedge_k w_k = x_m \) dan
 \[
 \exists x_m, \chi \leftrightarrow \bigwedge_i w_0 < u_i \wedge \bigwedge_k w_0 = w_k
 \]

- Als \(\chi = \bigwedge_i v_j < x_m \wedge \bigwedge_k x_m = w_k \) dan
 \[
 \exists x_m, \chi \leftrightarrow \bigwedge_j v_j < w_0 \wedge \bigwedge_k w_0 = w_k
 \]

- Als \(\chi = \bigwedge_i u_i < x_m \) dan is \(\exists x_m, \chi \) steeds waar omdat \(DO \) geen eindpunten heeft en we kunnen deze term dus droppen.

- Als \(\chi = \bigwedge_j v_j < x_m \) dan is wederom \(\exists x_m, \chi \) een ware uitspraak.

- Als \(\chi = \bigwedge_k w_k = x_m \) dan is
 \[
 \exists x_m, \chi \leftrightarrow \bigwedge_k w_0 = w_k
 \]

We hebben dus de existentiële quantor \(\exists x_m \) kunnen elimineren. Wat als deze quantor nu \(\forall x_m \) zou zijn, moeten we dan het voorgaande nog es overdoen? Gelukkig niet, we gebruiken

\[
\forall x_m, \phi \leftrightarrow \neg \exists x_m, \neg \phi
\]

We kunnen deze quantor eliminatie gebruiken om een alternatief te geven voor de volledigheid van \(DO \). Meestal krijgen we echter niet volledigheid enkel uit quantor eliminatie. Bvb. de theorie der algebraisch gesloten lichamen heeft eliminatie van quantoren maar is toch niet compleet (de karakteristiek is nog onbepaald). Wat kunnen we dan wel in het algemeen besluiten uit de eliminatie?

Definitie 2.3.2 Een theorie \(T \) is model gesloten indien voor alle modellen \(A \) en \(B \) van \(T \) geldt

\[
A \subseteq B \Rightarrow A \preceq B
\]
Stelling 2.3.1 Als T quantoren eliminatie toelaat, dan is T model gesloten.

Bewijs: Zij A, B modellen voor T met $A \subseteq B$. We moeten aantonen dat als $FV(\phi) = \{x_1, ..., x_n\}$ en $a_1, ..., a_n \in A$ dan

$$A \models \phi(a_1, ..., a_n) \iff B \models \phi(a_1, ..., a_n)$$

Omdat T eliminatie van quantoren toelaat kunnen we een quantoren vrije $\psi(x_1, ..., x_n)$ vinden met $T \vdash \phi \iff \psi$. Dus het volstaat voor de quantoren vrije ψ te bewijzen

$$A \models \psi(a_1, ..., a_n) \iff B \models \psi(a_1, ..., a_n)$$

en dit kunnen we per induktie aantonen (oefening). □

Definitie 2.3.3 Een theorie T heeft een priem-model als er een model \mathcal{P} van T is zodat \mathcal{P} op isomorfisme na bevat is in elk model van T.

Oefening 2.3.1 Als T model volledig is en een priem-model heeft, dan is T volledig.

2.4 Peano en niet standaard modellen

Het Peano axioma stelsel heeft als taal L_{Peano} bestaande uit

- een 2-voudig relatie symbool $=$
- een 1-voudig functie symbool S
- twee 2-voudige functie symbolen $+$ en \cdot
- een constant symbool 0

Definitie 2.4.1 Een Peano structuur A is een model voor de volgende verzameling S van eerste-orde zinnen in L_{Peano}

$$\forall x(0 \neq S(x))$$
$$\forall x y(S(x) = S(y) \rightarrow x = y)$$
$$\forall x(x + 0 = x)$$
$$\forall x y(x + S(y) = S(x + y))$$
$$\forall x (x.0 = 0)$$
$$\forall x y(x.S(y) = x.y + x)$$
$$\phi(0) \land \forall x(\phi(x) \rightarrow \phi(S(x))) \rightarrow \forall x \phi(x)$$

waarbij het laatste axioma het principe der induktie wordt genoemd.
2.5. CODERING VAN EERSTE-ORDE THEORIEEN

Men kan hiermee ook andere 'constanten' en 'relatie' en 'functie' symbolen definieren als zinnen in Peano. Bvb.

\[\bar{1} = S(0), \bar{2} = S(1) \text{ en algemeen } \bar{n} + \bar{1} = S(\bar{n}) \]
\[x < y \text{ als } \exists z (x + Sz = y) \]
\[x \leq y \text{ als } x < y \lor x = y \]

De positieve gehele getallen zijn met de voor de hand liggende interpretatie het bedoelde standaard model van de Peano axiomas. Verder is het makkelijk aan te tonen dat N een priem model is voor het Peano stelsel. Zij nu \(T = Th(N) \) dan is het moeilijk te geloven dat er ook nog andere modellen voor \(T \) kunnen bestaan. Dat dit toch het geval is weten we uit de Löwenheim-Skolem stellingen. Deze modellen noemen van niet-standaard modellen voor Peano en noteren we vaak met "Z. We zullen nu een niet-aftelbaar model \(A \) van \(T \) bestuderen. Vermits \(A \models Th(N) \) weten we dat \(N \preceq A \). We willen nu weten hoe \(N \) in \(A \) ingebed is.

Oefening 2.4.1 Ga na dat er geen elementen van \(A \) liggen tussen de standaard getallen \(N \), dat is, de niet-standaard getallen \(A - N \) zijn allen groter dan ieder natuurlijk getal. Bewijs ook dat \(A \) een niet-Archimedische orde heeft.

Verder heeft niet ieder deel van \(A \) een minimaal element. Dit is echter wel het geval voor alle niet lege definieerbare delen van \(A \). Zulk deel is gedefinieerd door een formule \(\phi(x) \) in de taal via \(\{ b_A | A \models \phi(b) \} \). Nu hebben we voor \(N \) de eigenschap

\[N \models \exists x \phi(x) \rightarrow \exists x (\phi(x) \land \forall y (\phi(y) \rightarrow x \leq y)) \]

en deze zin geldt dus ook in \(A \) dus de definieerbare deelverzameling geassocieerd aan \(\phi \) moet een minimaal element hebben in \(A \).

Oefening 2.4.2 De verzameling van standaard getallen in een niet-standaard model van Peano is niet definieerbaar.

Gevolg 2.4.1 Als \(\phi(\bar{n}) \) geldt in een niet-standaard model voor oneindig veel gehele getallen \(n \), dan geldt \(\phi(a) \) ook voor tenminste 1 niet-standaard getal.

Bewijs: Anders definieert de zin \(\exists y (x < y \land \phi(y)) \) de verzameling standaard getallen. \(\square \)

2.5 Codering van eerste-orde theorieen

Zij \(T \) een consistente eerste-orde theorie in een bepaalde taal \(\mathcal{L} \). We leggen ook een (mogelijk) andere theorie \(S \) vast die bevat is in \(T \) d.i. \(\mathcal{L} \subseteq \mathcal{L}_T \) en via deze inclusie ook \(S \subseteq T \). Meestal veronderstellen we dat \(S \) de Peano axiomas zijn
maar dat laten we voorlopig vrij. We eisen 'slechts' dat er een codering bestaat van T in S. Vermits de codering in S gebeurt moeten we een grote voorraad hebben van constante symbolen en gesloten termen in S. In het Peano axioma stelsel hebben we 0, 1, ..., en iedere formule ϕ in \mathcal{L} associëren we een gesloten term $[\phi]$ in \mathcal{S} en we noemen dit de code van ϕ. Merk op dat wanneer $\phi(x)$ een formule is met vrije variabele x, dan is $[\phi(x)]$ de gesloten term die $\phi(x)$ codeert met x als syntactische term en niet als parameter.
Verder hebben we in S functie symbolen die geassocieerd zijn aan de logische connectieven en quantorens zodat voor alle formules ϕ, ψ geldt

- $S \vdash \text{neg}([\phi]) = \neg \phi$
- $S \vdash \text{imp}([\phi], [\psi]) = [\phi \rightarrow \psi]$
- $S \vdash \text{en}([\phi], [\psi]) = [\phi \land \psi]$
- $S \vdash \text{of}([\phi], [\psi]) = [\phi \lor \psi]$
- $S \vdash \text{alle}([x], [\phi]) = [\forall x \phi]$
- $S \vdash \text{best}([x], [\phi]) = [\exists x \phi]$

Belangrijker voor het vervolg is de substitutie functie, zodanig dat voor alle formules $\phi(x)$ met vrije variabele x en alle termen t

$$S \vdash \text{subst}([\phi(x)], [t]) = [\phi(t)]$$

en op analoge manier hebben we functies subst_n die n vrije variabelen substitueren door termen.
Tenslotte coderen we bewijzen en hebben we dus een 2-voudig relatie symbool in S

$$\text{Bewijs}_T(x, y)$$

dat we interpreteren als "x is een bewijs voor $y". Formeel, voor alle gesloten termen t_1, t_2 van S geldt

$$S \vdash \text{Bewijs}_T(t_1, t_2) \text{ asa } t_1 \text{ is de code van een bewijs in } T \text{ van de formule met code } t_2$$

Of nog anders uitgedrukt

$$T \vdash \phi \text{ asa } S \vdash \text{Bewijs}_T(t, [\phi])$$

voor een gesloten term t.
2.6. GÖDEL'S ONVOLLEDIGHEID STELLINGEN

Tenslotte definieren we een relatie die bewijsbaarheid beweert

\[\text{Bew}_T(y) \leftrightarrow \exists x \text{Bew}_T(x, y) \]

Tenslotte leggen we aan de codering volgende afleidings condities op:

\[
\begin{align*}
D_1 & \quad T \vdash \phi \text{ impliceert } S \vdash \text{Bew}_T(\phi) \\
D_2 & \quad S \vdash \text{Bew}_T(\phi) \rightarrow \text{Bew}_T(\text{Bew}_T(\phi)) \\
D_3 & \quad S \vdash \text{Bew}_T(\phi) \land \text{Bew}_T(\phi \rightarrow \psi) \rightarrow \text{Bew}_T(\psi)
\end{align*}
\]

Definitie 2.5.1 We noemen T ω-consistent als de volgende versterking van de omkering van D₁ geldt

\[T \vdash \text{Bew}_T(\phi) \text{ impliceert } T \vdash \phi \]

2.6 Gödel's onvolledigheid stellingen

We veronderstellen dat we een codering hebben van T is S die aan de afleidings condities voldoet.

Stelling 2.6.1 (diagonalisatie lemma) Zij \(\phi(x) \) een eerste-orde formule in T die juist 1 vrije variabele x heeft. Dan bestaat er een zin \(\psi \) waarvoor geldt

\[S \vdash \psi \leftrightarrow \phi(\psi) \]

Als \(\phi \) en \(\psi \) niet in \(L_S \) gedefinieerd zijn, dan bedoelen we met \(S \vdash ... \) dat de equivalentie bewezen kan worden in de theorie \(S' \) van \(L_T \) waarvan de enige niet logische axioma's deze van S zijn.

Bewijs: Gegeven \(\phi(x) \), definiere \(\theta(x) \leftrightarrow \phi(\text{subst}(x, x)) \) (de 'diagonalisatie' van \(\phi \)). Zij nu

\[m = \theta(x) \text{ en } \psi = \theta(m) \]

We beweren nu dat voor \(\psi \) de bewering geldt. Immers, in S hebben we de equivalenties

\[
\begin{align*}
\psi & \leftrightarrow \theta(m) \\
& \leftrightarrow \phi(\text{subst}(m, m)) \\
& \leftrightarrow \phi(\text{subst}(\theta(x), m)) \text{ vermits } m = \theta(x) \\
& \leftrightarrow \phi(\theta(m)) \\
& \leftrightarrow \phi(\psi)
\end{align*}
\]

Tenslotte passen we het diagonaliteits lemma toe op \(\neg \text{Bew}_T(x) \)
Stelling 2.6.2 (Gödel’s eerste onvolledigheid stelling) Zij \(T \) een eerste-orde theorie die een codering in \(S \) toelaat die aan de afleidings condities voldoet. Dan bestaat er een zin \(\phi \) die zijn eigen onbewijsbaarheid beweert en zodanig dat

1. Als \(T \) consistent is geldt \(T \not\vdash \phi \)
2. Als \(T \) \(\omega \)-consistent is geldt \(T \not\vdash \neg \phi \)

\[T \vdash \phi \leftrightarrow \neg \text{Bew}_T[\phi] \]

Veronderstel dat \(T \vdash \phi \) dan zou dit wegens de afleidings conditie \(D_1 \) impliceren dat \(T \vdash \text{Bew}_T[\phi] \) wat impliceert dat \(T \vdash \neg \phi \). Maar dit is in tegenspraak met de consistentie van \(T \), bijgevolg \(T \not\vdash \phi \).

(2) : Stel dat \(T \vdash \neg \phi \) dan \(T \vdash \neg \text{Bew}_T(\phi) \) (wegens definitie van \(\phi \)) en dus \(T \vdash \text{Bew}_T(\neg \phi) \) maar dan geldt wegens de definitie van \(\omega \)-consistentie dat \(T \vdash \phi \) wat wederom in tegenspraak is met de consistentie van \(T \).

\[T \not\vdash \text{Con}_T \]

waarin \(\text{Con}_T \) de zin is die de consistentie van \(T \) beweert.

\[S \vdash \phi \leftrightarrow \text{Con}_T \]

We gaan eerst antonen dat \(S \vdash \phi \rightarrow \text{Con}_T \). Omdat \(\phi \) steeds vals is geldt \(T \vdash \phi \rightarrow \phi \) en dus ook wegens \(D_1 \) : \(S \vdash \text{Bew}_T(\phi \rightarrow \phi) \). Maar dit impliceert op zijn beurt dat

\[S \vdash \text{Bew}_T[\phi] \rightarrow \text{Bew}_T[\phi] \]

(want de enige manier dat dit vals kan zijn is wanneer \(S \vdash \text{Bew}_T[\phi] \) en \(S \not\vdash \text{Bew}_T(\phi) \). Maar uit \(S \vdash \text{Bew}_T[\phi \rightarrow \phi] \wedge \text{Bew}_T[\phi] \) volgt \(S \vdash \text{Bew}_T[\phi] \) een contradictie.) Wegens diagonalisatie hebben we tevens \(S \vdash \phi \rightarrow \neg \text{Bew}_T(\phi) \) en dit samen met (\(S \vdash \phi \rightarrow \neg \text{Bew}_T(\phi) \)) wat we moesten aantonen.

Wegens \(D_2 \) hebben we

\[S \vdash \text{Bew}_T[\phi] \rightarrow \text{Bew}_T[\text{Bew}_T(\phi)] \]
2.6. **GÖDEL’S ONVOLLEDIGHEID STELLINGEN**

Verder hebben we per definitie van φ dat $T \vdash \text{Bew}_T([\phi]) \rightarrow \neg \phi$ en dus wegens D_1 ook

$$ (2) \quad S \vdash \text{Bew}_T([\text{Bew}_T([\phi]) \rightarrow \neg \phi]) $$

Uit (1) en (2) en D_3 volgt dan

$$ (***) \quad S \vdash \text{Bew}_T([\phi]) \rightarrow \text{Bew}_T([\neg \phi]) $$

Nu geldt steeds $T \vdash (\phi \rightarrow \phi \land \neg \phi) \lor (\neg \phi \rightarrow \phi \land \neg \phi)$ en dus hebben we of $T \vdash \phi \rightarrow \phi \land \neg \phi$ of $T \vdash \neg \phi \rightarrow \phi \land \neg \phi$. Uit beiden volgt wegens het voorgaande en D_1 en D_3 dat

$$ S \vdash \text{Bew}_T([\phi]) \rightarrow \text{Bew}_T([\phi \land \neg \phi]) $$

Nu geldt steeds $T \vdash \phi \land \neg \phi \rightarrow \bot$ en dus wegend D_1 en D_3 en bovenstaande ook

$$ S \vdash \text{Bew}_T([\phi]) \rightarrow \text{Bew}_T([\bot]) $$

en dus ook wegens contrapositie $S \vdash \neg \text{Bew}_T([\bot]) \rightarrow \neg \text{Bew}_T([\phi])$ maar dat is juist wat te moesten bewijzen.

\[\square \]

Oefening 2.6.1 (zie oefeningen) Ga na dat als T een eerste orde theorie is die de Peano axiomas omvat dat er dan een codering bestaat van T in het Peano stelsel dat aan de afleidings condities voldoet.

Een auteur die deze oefening vakkundig oplost schreef hierover:

"The details of an encoding are fascinating to work out and boring to read. The author wrote the present section for his own benefit and his feelings will not be hurt if the reader chooses to skip it."

Waarvan akte.