A non-commutative topology on $\text{rep} A$

Lieven Le Bruyn
Departement Wiskunde en Informatica
Universiteit Antwerpen
B-2020 Antwerp (Belgium)
lieven.lebruyn@ua.ac.be

Abstract

We extend the Zariski topology on $\text{simp} A$, the set of all simple finite dimensional representations of A, to a non-commutative topology (in the sense of Fred Van Oystaeyen) on $\text{rep} A$, the set of all finite dimensional representations of A, using Jordan-Hölder filtrations. The non-commutativity of the topology is enforced by the order of the composition factors.

All algebras will be affine associative k-algebras with unit over an algebraically closed field k. The *non-commutative affine 'scheme’* associated to an algebra A is, as a set, the disjoint union

$$\text{rep} A = \bigsqcup_n \text{rep}_n A$$

where $\text{rep}_n A$ is the (commutative) affine scheme of n-dimensional representations of A. In this note we will equip $\text{rep} A$ with a non-commutative topology in the sense of Fred Van Oystaeyen [5 §7.2] (or, more precisely, a slight generalization of it).

Here is the main idea. The twosided prime ideal spectrum $\text{spec} A$ is an (ordinary) topological space via the Zariski topology, see for example [4] or [11 §II.6]. Hence, the subset $\text{simp} A$ of all simple finite dimensional A-representations can be equipped with the induced topology. This topology can then be extended to a non-commutative topology on $\text{rep} A$ using Jordan-Hölder filtrations. The non-commutative nature of the topology is enforced by the order of the composition factors.

We give a few examples, connect this notion with that of Reineke’s composition monoid and remark on the difference between quotient varieties and moduli spaces from the perspective of non-commutative topology. Finally, we note that this construction can be generalized verbatim to any Artinian Abelian category as soon as we have a topology on the set of simple objects.
1 The Zariski topology on $\text{simp} \ A$.

Recall that a prime ideal P of A is a twosided ideal satisfying the property that if $I, J \subset P$ then $I \subset P$ or $J \subset P$ for any pair of twosided ideals I, J of A. The prime spectrum $\text{spec} \ A$ is the set of all twosided prime ideals of A. The Zariski topology on $\text{spec} \ A$ has as its closed subsets

$$\forall(S) = \{P \in \text{spec} \ A \mid S \subset P\}$$

where S varies over all subsets of A, see for example [1 Prop. II.6.2]. Note that an algebra morphism $\phi : A \longrightarrow B$ does not necessarily induce a continuous map $\phi^* : \text{spec} \ B \longrightarrow \text{spec} \ A$ but is does so in the case ϕ is a central extension in the sense of [1 §II.6].

If $M \in \text{rep}_n A$ is a simple n-dimensional representation, there is a defining epimorphism $\psi_M : A \longrightarrow M_n(k)$ and the kernel of this morphism $\ker \psi_M$ is a twosided maximal (hence prime) ideal of A. We define the Zariski topology on the set of all simple finite dimensional representations $\text{simp} \ A$ by taking as its closed subsets

$$\forall(S) = \{M \in \text{simp} \ A \mid S \subset \ker \psi_M\}$$

Again, one should be careful that whereas an algebra map $\phi : A \longrightarrow B$ induces a map $\phi^* : \text{rep} \ B \longrightarrow \text{rep} \ A$ it does not in general map $\text{simp} \ B$ to $\text{simp} \ A$ (unless ϕ is a central extension).

With \mathcal{L}_A we will denote the set of all open subsets of $\text{simp} \ A$. \mathcal{L}_A will be the set of letters on which to base our non-commutative topology.

2 Non-commutative topologies (and generalizations).

In [5, Chp. 7] Fred Van Oystaeyen defined non-commutative topologies which are generalizations of usual topologies in which it is no longer true that $A \cap A$ is equal to A for an open set A. In order to keep dichotomies of possible definitions to a minimum he imposed left-right symmetric conditions on the definition. However, for applications to representation theory it seems that the most natural non-commutative topologies are truly one-sided. For this reason we take some time to generalize some definitions and results of [5 Chp. 7].

We fix a partially ordered set (Λ, \leq) with a unique minimal element 0 and a unique maximal element 1, equipped with two operations \land and \lor. With i_Λ we will denote the set of all idempotent elements of Λ, that is, those $x \in \Lambda$ such that $x \land x = x$. A finite global cover is a finite subset $\{\lambda_1, \ldots, \lambda_n\}$ such that $1 = \lambda_1 \lor \ldots \lor \lambda_n$. In the table below we have listed the conditions for a (one-sided) non-commutative topology. Note that some requirements are less essential than others. For example, the covering condition (A10) is only needed if we want to fit non-commutative topologies in the framework of non-commutative Grothendieck topologies [5] and the weak modularity condition (A9) is not required if every basic open is \lor-idempotent (as is the case in most examples).
\[
(x \lor y) \land \cdots \land (x \lor y) = x
\]
\[
(x \lor y) \land \cdots \land (x \lor y) = x
\] (01)

\[
x \lor (q \land p) \supseteq (x \lor q) \land x
\]
\[
x \lor (q \land p) \supseteq (x \lor q) \land p
\] (6)

\[
z \land x \leq x \land z \iff z \leq x
\]
\[
z \land x \leq z \land x \iff z \leq x
\] (8)

\[
z \land x \land z = (z \land x) \land z = z \land (x \land z)
\]
\[
z \land x \land z = (z \land x) \land z = z \land (x \land z)
\] (7)

\[
x = x \land 0
\]
\[
x = x \land 0
\]
\[
x = 0 \land x
\]
\[
I = I \land x
\] (9)

\[
z \land k \leq x \land z \iff z \leq x
\]
\[
z \land k \leq z \land x \iff z \leq x
\] (5)

\[
z \lor (x \lor z) = (z \lor x) \lor z = z \lor (x \lor z)
\]
\[
z \lor (x \lor z) = (z \lor x) \lor z = z \lor (x \lor z)
\] (6)

\[
0 = x \lor 0
\]
\[
0 = x \lor 0
\]
\[
x = x \lor 1
\]
\[
x = x \lor 1
\] (2)

\[
k \leq k \lor x
\]
\[
k \leq k \lor x
\]
\[
x \leq k \lor x
\] (1)
Λ is said to be a right non-commutative topology if and only if the middle and right column conditions of (A1)-(A10) are valid for all \(x, y, z \in \Lambda\), all \(a, b \in i\Lambda\) with \(a \leq b\) and all finite global covers \(\{\lambda_1, \ldots, \lambda_n\}\).

Λ is said to be a non-commutative topology if and only if the conditions (A1)-(A10) are valid for all \(x, y, z \in \Lambda\), all \(a, b \in i\Lambda\) with \(a \leq b\) and all finite global covers \(\{\lambda_1, \ldots, \lambda_n\}\).

There are at least two ways of building a genuine non-commutative topology out of these sets of basic opens. We briefly sketch the procedures here and refer to the forthcoming monograph [6] for details in the symmetric case (the one-sided versions present no real problems).

Let \(T(\Lambda)\) be the set of all finite \((\land, \lor)\)-words in the contractible idempotent elements \(i\Lambda\) (that is, \(\lambda \in i\Lambda\) such that for all \(\lambda_1, \lambda_2\) with \(\lambda \leq \lambda_1 \lor \lambda_2\) we have that \(\lambda = (\lambda \land \lambda_1) \lor (\lambda \land \lambda_2)\)). If \(\Lambda\) is a (left,right) non-commutative topology, then so is \(T(\Lambda)\). The \(\lor\)-complete topology of virtual opens \(T'(\Lambda)\) is then the set of all \((\land, \lor)\)-words in the contractible idempotents of finite length in \(\land\) (but not necessarily of finite length in \(\lor\)). This non-commutative topology has properties very similar to that of an ordinary topology and, in fact, has associated to it a commutative shadow.

The second construction, leading to the pattern topology, starts with the equivalence classes of directed systems \(S \subset \Lambda\) (that is, if for all \(x, y \in S\) there is a \(z \in S\) such that \(z \leq x \) and \(z \leq y\)) and where the equivalence relation \(\sim\) is defined by

\[
\forall a \in S, \exists a' \in S, a' \leq a \text{ and } b \leq a' \leq b' \text{ for some } b, b' \in S'. \\
\forall b \in S', \exists b' \in S', b' \leq b \text{ and } a \leq b' \leq a' \text{ for some } a, a' \in S.
\]

One can extend the \(\land, \lor\) operations on \(\Lambda\) to the equivalence classes \(C(\Lambda) = \{[S] \mid S \text{ directed}\}\) in the obvious way such that also \(C(\Lambda)\) is a (left,right) non-commutative topology. A directed set \(S \subset \Lambda\) is said to be idempotent if for all \(a \in S\), there is an \(a' \in S \cap i\Lambda\) such that \(a' \leq a\). If \(S\) is idempotent then \([S] \in iC(\Lambda)\) and those idempotents will be called strong idempotents. The pattern topology \(\Pi(\Lambda)\) is the (left,right) non-commutative topology of finite \((\land, \lor)\)-words in the strong idempotents of \(C(\Lambda)\). A directed system \([S]\) is called a point iff \([S] \leq \lor[S_\alpha]\) implies that \([S] \leq [S_\alpha]\) for some \(\alpha\).

3 The basic opens.

For an \(n\)-dimensional representation \(M\) of \(A\) we call a finite filtration of length \(u\)

\[
\mathcal{F}^u : 0 = M_0 \subset M_1 \subset \ldots \subset M_u = M
\]

of \(A\)-representations a Jordan-Hölder filtration if the successive quotients

\[
\mathcal{F}_i = \frac{M_i}{M_{i-1}}
\]
are simple \(A \)-representations. Recall that \(\mathcal{L}_A \) is the set of all open subsets \(V \) of \(\text{simp} \ A \). With \(\mathbb{W}_A \) we denote the non-commutative words in these letters
\[
\mathbb{W}_A = \{ V_1 \ldots V_k \mid V_i \in \mathcal{L}_A, k \in \mathbb{N} \}
\]
For a given word \(w = V_1 V_2 \ldots V_k \in \mathbb{W}_A \) we define the left basic open set
\[
\mathcal{O}^l_w = \{ M \in \text{rep} \ A \mid \exists \mathcal{F}^w \text{ Jordan-Hölder filtration on } M \text{ such that } \mathcal{F}_i \in V_i \}
\]
and the right basic open set
\[
\mathcal{O}^r_w = \{ M \in \text{rep} \ A \mid \exists \mathcal{F}^w \text{ Jordan-Hölder filtration on } M \text{ such that } \mathcal{F}_{w-i} \in V_{k-i} \}
\]
Finally, to make these definitions symmetric we define the basic open set
\[
\mathcal{O}_w = \{ M \in \text{rep} \ A \mid \exists \mathcal{F}^w \text{ Jordan-Hölder filtration on } M \text{ such that } \mathcal{F}_{i_{j-1}} \in V_{j-1} \}
\]
Clearly, \(\mathcal{O}^l_w \) consists of those representations having prescribed bottom structure, whereas \(\mathcal{O}^r_w \) consists of those with prescribed top structure. In order to avoid three sets of definitions we will denote from now on \(\mathcal{O}_\bullet \) whenever we mean \(\bullet \in \{ l, r, \emptyset \} \).

If \(w = L_1 \ldots L_k \) and \(w' = M_1 \ldots M_l \), we will denote with \(w \cup w' \) the multi-set \(\{ N_1, \ldots, N_m \} \) where each \(N_i \) is one of \(L_j, M_j \) and \(N_i \) occurs in \(w \cup w' \) as many times as its maximum number of factors in \(w \) or \(w' \). With \(\text{rep}(w \cup w') \) we denote the subset of \(\text{rep} \ A \) consisting of the representations of \(M \) having a Jordan-Hölder filtration having factor-multi-set containing \(w \cup w' \). For any triple of words \(w, w' \) and \(w'' \) we denote \(\mathcal{O}_{w''}(w \cup w') = \mathcal{O}_{w''} \cap \text{rep}(w \cup w') \).

We define an equivalence relation on the basic open sets by
\[
\mathcal{O}_w \approx \mathcal{O}_{w'} \iff \mathcal{O}_w(w \cup w') = \mathcal{O}_{w'}(w \cup w')
\]
The reason for this definition is that the condition of \(M \in \mathcal{O}_w \) is void if \(M \) does not have enough Jordan-Hölder components to get all factors of \(w \) which makes it impossible to define equality of basic open sets defined by different words.

We can now define the partially ordered sets \(\Lambda^*_A \) as consisting of all basic open subsets \(\mathcal{O}_w \) of \(\text{rep} \ A \). The partial ordering \(\leq \) is induced by set-theoretic inclusion modulo equivalence, that is,
\[
\mathcal{O}_w \leq \mathcal{O}_{w'} \iff \mathcal{O}_w(w \cup w') \subseteq \mathcal{O}_{w'}(w \cup w')
\]
As a consequence, equality \(= \) in the set \(\Lambda^*_A \) coincides with equivalence \(\approx \). Observe that these partially ordered sets have a unique minimal and a unique maximal element (upto equivalence)
\[
0 = \emptyset = \mathcal{O}_0^* \quad \text{and} \quad 1 = \text{rep} \ A = \mathcal{O}_{\text{simp} \ A}^*
\]
The operations \(\vee \) and \(\wedge \) are defined as follows : \(\vee \) is induced by ordinary set-theoretic union and \(\wedge \) is induced by concatenation of words, that is
\[
\mathcal{O}_w \wedge \mathcal{O}_{w'} \approx \mathcal{O}_{ww'}
\]
Theorem 1 With notations as before :

- \((\Lambda^l_A, \leq, \preceq, 0, 1, \lor, \land)\) is a left non-commutative topology on \(\text{rep} \ A\).
- \((\Lambda^r_A, \leq, \preceq, 0, 1, \lor, \land)\) is a right non-commutative topology on \(\text{rep} \ A\).

Proof. The tedious verification is left to the reader. Here, we only stress the importance of the equivalence relation for example in verifying \(x \land 1 = x\). So, let \(w = L_1 \ldots L_k\)

\[O^l_w \land 1 = O^l_{L_1 \ldots L_k \mathcal{S} \mathcal{I} \mathcal{M} \mathcal{A}} \subset O^l_w\]

and this inclusion is proper (look at elements in \(O^l_w\) having exactly \(k\) composition factors). However, as soon as the representation has \(k + 1\) composition factors, it is contained in the left hand side whence \(O^l_w \land 1 \approx O^l_w\). A similar argument is needed in the covering condition. □

Note however that \((\Lambda_A, \leq, \preceq, 0, 1, \lor, \land)\) is not necessarily a non-commutative topology: the problematic conditions are \(O^l_w \land 1 = O^l_w = 1 \land O^l_w\) and the covering condition. The reason is that for \(w = L_1 \ldots L_k\) as before and \(M \in O^l_w\) having \(> k\) factors, it may happen that the last factor is the one in \(L_k\) leaving no room for a successive factor in \(\mathcal{S} \mathcal{I} \mathcal{M} \mathcal{A}\) (whence \(O^l_w \land 1\) is not equivalent to \(O^l_w\)).

Example 1 Let \(A\) be a finite dimensional algebra, then \(A\) has a finite number of simple representations \(\mathcal{S} \mathcal{I} \mathcal{M} \mathcal{A} = \{S_1, \ldots, S_n\}\) and the Zariski topology is the discrete topology. If for some \(1 \leq i, j \leq n\) we have that

\[\text{Ext}^1_A(S_i, S_j) = 0 \quad \text{and} \quad \text{Ext}^1_A(S_j, S_i) \neq 0\]

then \(\Lambda^l_A\) is a genuinely non-commutative topology, for example

\[O^l_{S_i} \land O^l_{S_j} = O^l_{S_i S_j} \neq O^l_{S_j S_i} = O^l_{S_j} \land O^l_{S_i}\]

as a non-trivial extension \[\begin{array}{c}
0 \rightarrow S_i \rightarrow X \rightarrow S_j \rightarrow 0
\end{array}\] belongs to \(O^l_{S_i, S_j}(S_i S_j \cup S_j S_i)\) but not to \(O^l_{S_j, S_i}(S_i S_j \cup S_j S_i)\).

4 Reineke’s mon(str)oid.

When \(A\) is the path algebra of a quiver without oriented cycles we can generalize the foregoing example and connect the previous definitions to the composition monoid introduced and studied by Markus Reineke in [2].

Let \(Q\) be a quiver without oriented cycles, then its path algebra \(A = \mathbb{k}Q\) is finite dimensional hereditary with all simple representations one-dimensional and in one-to-one correspondence with the vertices of \(Q\). For every dimension \(n\) we have that

\[\text{rep}_n A = \bigsqcup_{|\alpha| = n} GL_n \times^{GL(\alpha)} \text{rep}_\alpha Q\]
where α runs over all dimension vectors of total dimension n and where $\text{rep}_{\alpha} Q$ is the affine space of all α-dimensional representations of the quiver Q with base-change group action by $GL(\alpha)$.

The Reineke monstroid $\mathcal{M}(Q)$ has as its elements the set of all irreducible closed $GL(\alpha)$-stable subvarieties of $\text{rep}_{\alpha} Q$ for all dimension vectors α, equipped with a product $A \ast B = \{ X \in \text{rep}_{\alpha+\beta} Q \mid$ there is an exact sequence $0 \rightarrow M \rightarrow X \rightarrow N \rightarrow 0 \rightarrow M \in A, N \in B \}$ if A (resp. B) is an element of $\mathcal{M}(Q)$ contained in $\text{rep}_{\alpha} Q$ (resp. in $\text{rep}_{\beta} Q$). It is proved in [2, lemma 2.2] that $A \ast B$ is again an element of $\mathcal{M}(Q)$. This defines a monoid structure on $\mathcal{M}(Q)$ which is too unwieldy to study directly. Observe that we changed the order of the terms wrt. the definition given in [2]. That is, we will work with the opposite monoid of [2].

On the other hand, the Reineke composition monoid is very tractable. It is the submonoid $C(Q)$ of $\mathcal{M}(Q)$ generated by the vertex-representation spaces $R_i = \text{rep}_{\delta_i} Q$. These generators satisfy specific commutation relations which can be read off from the quiver structure, see [2, §5]. For example, if there are no arrows between v_i and v_j then

$$R_i \ast R_j = R_j \ast R_i$$

and if there are no arrows from v_i to v_j but n arrows from v_j to v_i, then

$$\begin{cases} R_i^{(n+1)} \ast R_j = R_i^n \ast R_j \ast R_i \\ R_i \ast R_j^{(n+1)} = R_j \ast R_i \ast R_j^n \end{cases}$$

For more details on the structure of $C(Q)$ we refer to [2, §5].

There is a relation between $C(Q)$ and the left- and right- non-commutative topologies Λ^l_A and Λ^r_A. Because the Zariski topology on $\text{simp } A$ is the discrete topology on the set $\{S_1, \ldots, S_k\}$ of vertex simples, it is important to understand O^r_w where w is a word in the S_i, say $w = S_{i_1}S_{i_2} \ldots S_{i_u}$. In fact, we could have based our definition of a one-sided non-commutative topology on the set \mathcal{L}_A of irreducible open subsets of $\text{simp } A$ and then these basic opens would be all. If C is a $GL(\alpha)$-stable subset of $\text{rep}_{\alpha} Q$ with $|\alpha| = n$, we will denote the subset $GL_n \times^{GL(\alpha)} C$ of $\text{rep}_n A$ by \tilde{C}.

Proposition 1

$$O^l_w = \bigcup_{w'} \tilde{A}_{w'} \quad \text{resp.} \quad O^r_w = \bigcup_{w'} \tilde{A}_{w'}$$

where $A_{w'}$ is a *-word in the generators R_i of the composition monoid such that w' can be rewritten (using the relations in $C(Q)$) in the form

$$w' = R_{i_1} \ast R_{i_2} \ast \ldots \ast R_{i_u} \ast w'' \quad \text{resp.} \quad w' = w'' \ast R_{i_1} \ast R_{i_2} \ast \ldots \ast R_{i_u}$$

for another *-word w''.

Also, the equivalence relation introduced before can be expressed in terms of $C(Q)$. If $w = S_{i_1}S_{i_2}...S_{i_u}$ and $w' = S_{j_1}S_{j_2}...S_{j_v}$ such that $w \cup w' = \{S_{k_1}, ..., S_{k_w}\}$, then

Proposition 2 $O_{w}^{l} \approx O_{w'}^{l}$ if and only if every \ast-word $v = R_{a_1} \ast \ldots \ast R_{a_z}$ containing in it distinct factors R_{k_1}, \ldots, R_{k_w} which can be brought in $C(Q)$ in the form

$$v = R_{i_1} \ast \ldots \ast R_{i_u} \ast v'$$

can also be written in the form

$$v = R_{j_1} \ast \ldots \ast R_{j_v} \ast v''$$

(and conversely). A similar result describes $O_{w}^{r} \approx O_{w'}^{r}$.

In particular, in this setting there will be hardly any idempotent basic opens (that is, satisfying $O_{w}^{r} \land O_{w'}^{r} \approx O_{w'}^{r}$). Clearly, if $\{S_{e_1}, \ldots, S_{e_a}\}$ are simples such that the quiver restricted to $\{v_{e_1}, \ldots, v_{e_a}\}$ has no arrows, then any word w in the S_{e_j} gives an idempotent O_{w}^{r}. In the following section we will give an example where every basic open is idempotent and hence we get a commutative topology.

5 The commutative case.

If A is a commutative affine k-algebra, then any simple representation is one-dimensional, $\mathbf{simp} A = X_{A}$ the affine (commutative) variety corresponding to A and the Zariski topologies on both sets coincide. Still, one can define the non-commutative topologies on $\mathbf{rep} A$. However,

Proposition 3 If A is a commutative affine k-algebra, then both Λ_{A}^{l} and Λ_{A}^{r} are commutative topologies. That is, for all words w and w' in L_{A} we have

$$O_{w}^{l} \land O_{w'}^{l} \approx O_{w'}^{l} \land O_{w}^{l} \quad \text{and} \quad O_{w}^{r} \land O_{w'}^{r} \approx O_{w'}^{r} \land O_{w}^{r}$$

Proof. We claim that every basic open O_{w}^{l} is idempotent. Observe that all simple A-representations are one-dimensional and that there are only self-extensions of those, that is, if S and T are non-isomorphic simples, then $\text{Ext}_{A}^{1}(S, T) = 0 = \text{Ext}_{A}^{1}(T, S)$. However, there are self-extensions with the dimension of $\text{Ext}_{A}^{1}(S, S)$ being equal to the dimension of the tangent space at X_{A} in the point corresponding to S. As a consequence we have for any Zariski open subsets U and V of X_{A} that

$$O_{U \cap V}^{l} = O_{U}^{l} \cap O_{V}^{l}$$

as we can change the order of the filtration factors (a representation M is the direct sum of submodules $M_{1} \oplus \ldots \oplus M_{s}$ with each M_{i} concentrated in a single simple S_{i} and we can add the successive S_{i} factors of M at any wanted place in the filtration sequence). Hence, for every word w we have that

$$O_{w}^{l} \approx O_{w}^{l} \land O_{w}^{l}$$
and also for any pair of words w and w' we have that
\[O^l_w \land O^l_{w'} = O^l_{ww'} = O^l_{w'w} = O^l_{w'} \land O^l_w. \]

Observe that in [5] it is proved that a non-commutative topology in which every basic open is idempotent is commutative. We cannot use this here as the proof of that result uses both the left- and right- conditions. However, we are dealing here with a very simple example.

\[\Box \]

6 Quotient varieties versus moduli spaces.

Having defined a one-sided non-commutative topology on $\text{rep} A$ we can ask about the induced topology on the quotient variety $\mathcal{i}ss A$ of all isomorphism classes of semi-simple A-representations or on the moduli space $\text{moduli}_\theta A$ with respect to a certain stability structure θ, cfr. [3]. Experience tells us that it is a lot easier to work with quotient varieties than with moduli spaces and non-commutative topology may give a partial explanation for this.

Indeed, as the points of $\mathcal{i}ss A$ are semi-simple representations, it is clear that the induced non-commutative topology on $\mathcal{i}ss A$ is in fact commutative. However, as the points of $\text{moduli}_\theta A$ correspond to isomorphism classes of direct sums of stable representations (not simples!), the induced non-commutative topology on $\text{moduli}_\theta A$ will in general remain non-commutative. Still, in nice examples, such as representations of quivers, one can define another non-commutative topology on $\text{moduli}_\theta A$ which does become commutative. Use universal localization to cover $\text{moduli}_\theta A$ by opens isomorphic to $\mathcal{i}ss A_{\Sigma}$ for some families Σ of maps between projectives and equip $\text{moduli}_\theta A$ with a non-commutative topology (which then will be commutative!) obtained by gluing the induced non-commutative topologies on the $\text{rep} A_{\Sigma}$.

7 Generalizations.

It should be evident that our construction can be carried out verbatim in the setting of any Artinian Abelian category (that is, an Abelian category having Jordan-Hölder sequences) as soon as we have a natural topology on the set of simple objects. In fact, the same procedure can be applied when we have a left (or right) non-commutative topology on the simples.

In fact, the construction may even be useful in Abelian categories in which every object is filtered by special objects on which we can define a (one-sided) (non-commutative) topology.

References

[1] Claudio Procesi, Rings with polynomial identities, Marcel Dekker (1973)

